当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Iridium-incorporated cobalt hydroxide electrodeposited on titanium meshes enabling electroreduction of nitrate and nitrobenzene to ammonia and aniline
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-12-09 , DOI: 10.1039/d4ta06667g Jingwen Yan, Song Wu, DongLin Zhao, Dandan Li, Guangyin Fan, Yan Long, Xiaojun Yu
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-12-09 , DOI: 10.1039/d4ta06667g Jingwen Yan, Song Wu, DongLin Zhao, Dandan Li, Guangyin Fan, Yan Long, Xiaojun Yu
The electrocatalytic nitrate reduction reaction (NO3RR) represents a feasible approach for the removal of harmful contaminants and the synthesis of green ammonia (NH3). However, a significant challenge associated with NO3RR is its sluggish kinetics. In this study, we constructed an iridium-incorporated cobalt hydroxide electrode deposited on titanium meshes (Ir@Co(OH)2/TM), which exhibits an impressive Faraday efficiency (FE) of 91.6 ± 2.2% at −0.2 V versus the reversible hydrogen electrode, as well as the highest NH3 yield of 927.3 ± 19.6 μmol h−1 cm−2 at −0.5 V. Furthermore, Ir@Co(OH)2/TM maintains exceptional activity in simulated wastewater, achieving a notable NH3 yield of 901.0 ± 71.6 μmol h−1 cm−2 with an FE of 92.7 ± 6.3% at −0.5 V. The electrode also demonstrates satisfactory performance in both alkaline media with varying NO3−/OH− concentrations and neutral media, indicating its broad applicability. Additionally, the minor fluctuations in current densities, NH3 yields, and FEs observed during the 12 hours stability test and the 20-cycle test confirm the outstanding stability and durability of Ir@Co(OH)2/TM. Notably, Ir@Co(OH)2/TM can also facilitate the electroreduction of nitrobenzene (Ph-NO2) to aniline (Ph-NH2), achieving a remarkable Ph-NO2 conversion of 90.6% and a Ph-NH2 selectivity of 71.6% at −0.5 V. This study presents a viable method for the efficient fabrication of bifunctional electrocatalysts aimed at enhancing the production of high-value chemicals from environmental contaminants.
中文翻译:
掺入铱的氢氧化钴电沉积在钛网上,能够将硝酸盐和硝基苯电还原成氨和苯胺
电催化硝酸盐还原反应 (NO3RR) 代表了去除有害污染物和合成绿氨 (NH3) 的可行方法。然而,与 NO3RR 相关的一个重大挑战是其动力学缓慢。在这项研究中,我们构建了一个沉积在钛网 (Ir@Co(OH)2/TM) 上的铱掺氢钴电极,与可逆氢电极相比,它在 -0.2 V 时表现出令人印象深刻的 91.6 ± 2.2% 的法拉第效率 (FE),以及最高的 NH3 产率,为 927.3 ± 19.6 μmol h-1 cm-2在 -0.5 V 下。此外,Ir@Co(OH)2/TM 在模拟废水中保持了出色的活性,在 -0.5 V 下实现了 901.0 ± 71.6 μmol h-1 cm-2 的显着 NH 产率和 92.7 ± 6.3% 的 FE。该电极在具有不同 NO3−/OH− 浓度的碱性介质和中性介质中也表现出令人满意的性能,表明其广泛的适用性。此外,在 12 小时稳定性测试和 20 次循环测试中观察到的电流密度、NH3 产率和 FE 的微小波动证实了 Ir@Co(OH)2/TM 出色的稳定性和耐用性。值得注意的是,Ir@Co(OH)2/TM 还可以促进硝基苯 (Ph-NO2) 电还原为苯胺 (Ph-NH2),实现 90 的显着 Ph-NO2 转化率。6%,在 −0.5 V 时 Ph-NH2 选择性为 71.6%。本研究提出了一种高效制备双功能电催化剂的可行方法,旨在提高从环境污染物中生产高价值化学品的能力。
更新日期:2024-12-13
中文翻译:
掺入铱的氢氧化钴电沉积在钛网上,能够将硝酸盐和硝基苯电还原成氨和苯胺
电催化硝酸盐还原反应 (NO3RR) 代表了去除有害污染物和合成绿氨 (NH3) 的可行方法。然而,与 NO3RR 相关的一个重大挑战是其动力学缓慢。在这项研究中,我们构建了一个沉积在钛网 (Ir@Co(OH)2/TM) 上的铱掺氢钴电极,与可逆氢电极相比,它在 -0.2 V 时表现出令人印象深刻的 91.6 ± 2.2% 的法拉第效率 (FE),以及最高的 NH3 产率,为 927.3 ± 19.6 μmol h-1 cm-2在 -0.5 V 下。此外,Ir@Co(OH)2/TM 在模拟废水中保持了出色的活性,在 -0.5 V 下实现了 901.0 ± 71.6 μmol h-1 cm-2 的显着 NH 产率和 92.7 ± 6.3% 的 FE。该电极在具有不同 NO3−/OH− 浓度的碱性介质和中性介质中也表现出令人满意的性能,表明其广泛的适用性。此外,在 12 小时稳定性测试和 20 次循环测试中观察到的电流密度、NH3 产率和 FE 的微小波动证实了 Ir@Co(OH)2/TM 出色的稳定性和耐用性。值得注意的是,Ir@Co(OH)2/TM 还可以促进硝基苯 (Ph-NO2) 电还原为苯胺 (Ph-NH2),实现 90 的显着 Ph-NO2 转化率。6%,在 −0.5 V 时 Ph-NH2 选择性为 71.6%。本研究提出了一种高效制备双功能电催化剂的可行方法,旨在提高从环境污染物中生产高价值化学品的能力。