当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Detecting and Attributing Change in Climate and Complex Systems: Foundations, Green’s Functions, and Nonlinear Fingerprints
Physical Review Letters ( IF 8.1 ) Pub Date : 2024-12-09 , DOI: 10.1103/physrevlett.133.244201
Valerio Lucarini, Mickaël D. Chekroun

Detection and attribution (DA) studies are cornerstones of climate science, providing crucial evidence for policy decisions. Their goal is to link observed climate change patterns to anthropogenic and natural drivers via the optimal fingerprinting method (OFM). We show that response theory for nonequilibrium systems offers the physical and dynamical basis for OFM, including the concept of causality used for attribution. Our framework clarifies the method’s assumptions, advantages, and potential weaknesses. We use our theory to perform DA for prototypical climate change experiments performed on an energy balance model and on a low-resolution coupled climate model. We also explain the underpinnings of degenerate fingerprinting, which offers early warning indicators for tipping points. Finally, we extend the OFM to the nonlinear response regime. Our analysis shows that OFM has broad applicability across diverse stochastic systems influenced by time-dependent forcings, with potential relevance to ecosystems, quantitative social sciences, and finance, among others. Published by the American Physical Society 2024

中文翻译:


检测和归因气候和复杂系统的变化:基础、格林函数和非线性指纹



检测和归因 (DA) 研究是气候科学的基石,为政策决策提供关键证据。他们的目标是通过最佳指纹识别方法 (OFM) 将观察到的气候变化模式与人为和自然驱动因素联系起来。我们表明,非平衡系统的响应理论为 OFM 提供了物理和动力学基础,包括用于归因的因果关系概念。我们的框架阐明了该方法的假设、优点和潜在弱点。我们使用我们的理论对在能量平衡模型和低分辨率耦合气候模型上进行的原型气候变化实验进行 DA。我们还解释了退化指纹识别的基础,它为临界点提供了早期预警指标。最后,我们将 OFM 扩展到非线性响应状态。我们的分析表明,OFM 在受时间依赖性强迫影响的不同随机系统中具有广泛的适用性,可能与生态系统、定量社会科学和金融等相关。 美国物理学会 2024 年出版
更新日期:2024-12-09
down
wechat
bug