当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Self-assembly-assisted dynamic placement of noble metals selectively on multifunctional carbide supports for alkaline hydrogen electrocatalysis
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-09 , DOI: 10.1039/d4ee04660a Seongbeen Kim, Seung-Jae Shin, Hoyoung Kim, Bupmo Kim, Namgyu Noh, Kug-Seung Lee, Jinkyu Park, Hyunwoo Jun, Jiwon Kim, Jaeho Byeon, Seonggyu Lee, Huawei Huang, Sunghyun Noh, Han Beom Jeong, Jong Hyun Jang, Jong Min Yuk, Wooyul Kim, Hyungjun Kim, Jinwoo Lee
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-09 , DOI: 10.1039/d4ee04660a Seongbeen Kim, Seung-Jae Shin, Hoyoung Kim, Bupmo Kim, Namgyu Noh, Kug-Seung Lee, Jinkyu Park, Hyunwoo Jun, Jiwon Kim, Jaeho Byeon, Seonggyu Lee, Huawei Huang, Sunghyun Noh, Han Beom Jeong, Jong Hyun Jang, Jong Min Yuk, Wooyul Kim, Hyungjun Kim, Jinwoo Lee
Atomically dispersed catalysts are ideal for alkaline hydrogen electrocatalysis with low noble metal loadings. However, previous designs have exhibited insufficient *OH binding and low cell performance, which limit their application in anion-exchange membrane water electrolyzers. In this study, we employed a self-assembly-assisted dynamic placement to prepare atomically dispersed electrocatalysts on heterostructured MoxC–C. The multifunctional MoxC support bolsters the dynamic placement while optimizing the interfacial water structure. The self-assembly-assisted dynamic placement facilitates the selective loading of atomically dispersed noble metals on MoxC at 1373 K by leveraging molecular interactions and metal–support interactions. The dynamic placement enables the construction of interfacial active systems between noble metals and MoxC, enhancing the reaction kinetics, stability, and CO tolerance of alkaline hydrogen electrocatalysis. Specifically, selective loading enables the effective utilization of *OH binding sites on MoxC, promoting water dissociation by increasing the free-water population in the interfacial water structure. In an anion-exchange membrane water electrolyzer, the designed catalysts exhibited higher cell stability (500 h) than commercial PtRu/C. They also exhibited enhanced performance even with a low noble metal loading (0.060 mgPt cm−2), achieving the US Department of Energy's 2026 target for proton-exchange membrane water electrolyzers.
中文翻译:
用于碱性氢电催化的自组装辅助贵金属选择性地动态放置在多功能硬质合金载体上
原子分散催化剂是低贵金属负载量的碱性氢电催化的理想选择。然而,以前的设计表现出 *OH 结合不足和低电池性能,这限制了它们在阴离子交换膜水电解槽中的应用。在这项研究中,我们采用自组装辅助动态放置来制备异质结构 MoxC-C 上的原子分散电催化剂。多功能 MoxC 支架在优化界面水结构的同时增强了动态放置。通过利用分子相互作用和金属-载体相互作用,自组装辅助动态放置有助于在 1373 K 下将原子分散的贵金属选择性加载到 MoxC 上。动态布置能够在贵金属和 MoxC 之间构建界面活性系统,从而提高碱性氢电催化的反应动力学、稳定性和 CO 耐受性。具体来说,选择性负载能够有效利用 MoxC 上的 *OH 结合位点,通过增加界面水结构中的自由水种群来促进水解离。在阴离子交换膜水电解槽中,设计的催化剂表现出比商用 PtRu/C 更高的电池稳定性 (500 h)。即使在低惰性金属负载量 (0.060 mgPt cm-2) 的情况下,它们也表现出增强的性能,实现了美国能源部 2026 年质子交换膜水电解槽的目标。
更新日期:2024-12-09
中文翻译:
用于碱性氢电催化的自组装辅助贵金属选择性地动态放置在多功能硬质合金载体上
原子分散催化剂是低贵金属负载量的碱性氢电催化的理想选择。然而,以前的设计表现出 *OH 结合不足和低电池性能,这限制了它们在阴离子交换膜水电解槽中的应用。在这项研究中,我们采用自组装辅助动态放置来制备异质结构 MoxC-C 上的原子分散电催化剂。多功能 MoxC 支架在优化界面水结构的同时增强了动态放置。通过利用分子相互作用和金属-载体相互作用,自组装辅助动态放置有助于在 1373 K 下将原子分散的贵金属选择性加载到 MoxC 上。动态布置能够在贵金属和 MoxC 之间构建界面活性系统,从而提高碱性氢电催化的反应动力学、稳定性和 CO 耐受性。具体来说,选择性负载能够有效利用 MoxC 上的 *OH 结合位点,通过增加界面水结构中的自由水种群来促进水解离。在阴离子交换膜水电解槽中,设计的催化剂表现出比商用 PtRu/C 更高的电池稳定性 (500 h)。即使在低惰性金属负载量 (0.060 mgPt cm-2) 的情况下,它们也表现出增强的性能,实现了美国能源部 2026 年质子交换膜水电解槽的目标。