当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication of TiO2 with Ru-induced lattice strain for enhancing photocatalytic nitrogen fixation in gas–solid reaction system
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-12-09 , DOI: 10.1016/j.ces.2024.121071
Yufei Yue, Yu Jin, Xiaoqing Yan, Xuelan Hou, Honghui Ou, Qizhong Huang, Huagui Hu, Guidong Yang

Photocatalytic nitrogen (N2) fixation is a promising strategy for green ammonia (NH3) synthesis. However, the design of catalysts possessing high nitrogen adsorption capacity and efficient N2 dissociation remains a significant challenge, owing to the poor solubility of N2 in aqueous solutions coupled with its high chemical stability. Herein, we prepared Ru-TiO2 with metal lattice strain and applied it to a gas–solid two-phase system (G-S). Compared to the conventional gas–liquid-solid three-phase system (G-L-S), the G-S system can effectively enhance N2 adsorption and shorten the diffusive mass transfer path. Additionally, Ru-TiO2 demonstrates improved N2 adsorption capacity and activation efficiency, giving the maximum NH3 production rate of 38.7 μmol g−1 h−1, which is about four times higher than that in the G-L-S system. Density functional theory results demonstrate that N2 adsorption and activation are optimized over the lattice-strained Ru surface. This work provides an innovative approach to developing advanced photocatalysts and NRR systems.

中文翻译:


制备 Ru 诱导晶格应变 TiO2 增强气固反应体系中光催化固氮作用



光催化氮 (N2) 固定是绿氨 (NH3) 合成的一种很有前途的策略。然而,由于 N2 在水溶液中的溶解度差,加上其化学稳定性高,因此设计具有高氮吸附能力和高效 N2 解离的催化剂仍然是一个重大挑战。在此,我们制备了具有金属晶格应变的 Ru-TiO2 并将其应用于气固两相系统 (G-S)。与传统的气-液-固三相体系 (G-L-S) 相比,G-S 体系可以有效增强 N2 吸附并缩短扩散传质路径。此外,Ru-TiO2 表现出更高的 N2 吸附能力和活化效率,NH3 的最大产生速率为 38.7 μmol g-1 h-1,大约是 G-L-S 系统的四倍。密度泛函理论结果表明,N2 吸附和活化在晶格应变 Ru 表面上得到优化。这项工作为开发先进的光催化剂和 NRR 系统提供了一种创新方法。
更新日期:2024-12-09
down
wechat
bug