当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Solvation Structure Engineering via Inorganic–Organic Composite Layer for Corrosion‐Resistant Lithium Metal Anodes in High‐Concentration Electrolyte
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-12-09 , DOI: 10.1002/aenm.202403944 Youngil Roh, Hyeokjin Kwon, Jaewon Baek, Changhoon Park, Seongyeong Kim, Kahee Hwang, A Reum Ha, Seongmin Ha, Jongchan Song, Hee‐Tak Kim
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-12-09 , DOI: 10.1002/aenm.202403944 Youngil Roh, Hyeokjin Kwon, Jaewon Baek, Changhoon Park, Seongyeong Kim, Kahee Hwang, A Reum Ha, Seongmin Ha, Jongchan Song, Hee‐Tak Kim
High‐concentration electrolytes have been reported to form an anion‐derived, inorganic‐rich solid electrolyte interphase on lithium metal electrodes; however, these electrodes suffer from high Li corrosion by the coordinated anions and consequent anion depletion. Herein, the study reports a composite layer comprising single‐ion conducting ceramic (SICC) nanoparticles and a gel polymer electrolyte (GPE), which can suppress the Li corrosion in a high‐concentration electrolyte based on lithium bis(fluorosulfonyl)imide (LiFSI) and a weakly solvating solvent (N ,N ‐dimethylsulfamoyl fluoride, FSA). The lithium‐ion space charges formed at the SICC/GPE interface reduce the coordination of anions in the composite layer, suppressing their decomposition. A Li | LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) pouch bi‐cell with a composite layer‐coated thin lithium metal anode (N/P = 1, thickness: 20 µm) delivers projected gravimetric (316 Wh kg−1 ) and projected volumetric (1433 Wh L−1 ) energy densities and exhibits stable operation for 350 cycles, with 70% capacity retention at 1/3 C charge–discharge rate. The engineering of the solvation structure through the inorganic–organic composite layer represents a practical strategy for developing corrosion‐resistant lithium metal anodes in high‐concentration electrolytes.
中文翻译:
通过无机-有机复合层进行高浓度电解质中耐腐蚀锂金属负极的溶剂化结构工程
据报道,高浓度电解质在锂金属电极上形成阴离子衍生的、富含无机物的固体电解质界面;然而,这些电极会受到配位阴离子的高锂腐蚀,从而导致阴离子消耗。在此,该研究报道了一种由单离子导电陶瓷 (SICC) 纳米颗粒和凝胶聚合物电解质 (GPE) 组成的复合层,它可以抑制基于双(氟磺酰)酰亚胺锂 (LiFSI) 和弱溶剂(N,N-二甲基磺酰氟,FSA)的高浓度电解质中的锂腐蚀。在 SICC/GPE 界面处形成的锂离子空间电荷减少了复合层中阴离子的配位,抑制了它们的分解。阿丽 |LiNi0.8Co0.1Mn0.1O2 (NCM811) 软包双电池具有复合层涂层的薄锂金属阳极(N/P = 1,厚度:20 μm)提供投影重量 (316 Wh kg-1) 和投影体积 (1433 Wh L-1) 能量密度,并表现出 350 次循环的稳定运行,在 70/1 C 充放电速率下保持 3% 的容量。通过无机-有机复合层的溶剂化结构工程代表了在高浓度电解质中开发耐腐蚀锂金属负极的实用策略。
更新日期:2024-12-09
中文翻译:
通过无机-有机复合层进行高浓度电解质中耐腐蚀锂金属负极的溶剂化结构工程
据报道,高浓度电解质在锂金属电极上形成阴离子衍生的、富含无机物的固体电解质界面;然而,这些电极会受到配位阴离子的高锂腐蚀,从而导致阴离子消耗。在此,该研究报道了一种由单离子导电陶瓷 (SICC) 纳米颗粒和凝胶聚合物电解质 (GPE) 组成的复合层,它可以抑制基于双(氟磺酰)酰亚胺锂 (LiFSI) 和弱溶剂(N,N-二甲基磺酰氟,FSA)的高浓度电解质中的锂腐蚀。在 SICC/GPE 界面处形成的锂离子空间电荷减少了复合层中阴离子的配位,抑制了它们的分解。阿丽 |LiNi0.8Co0.1Mn0.1O2 (NCM811) 软包双电池具有复合层涂层的薄锂金属阳极(N/P = 1,厚度:20 μm)提供投影重量 (316 Wh kg-1) 和投影体积 (1433 Wh L-1) 能量密度,并表现出 350 次循环的稳定运行,在 70/1 C 充放电速率下保持 3% 的容量。通过无机-有机复合层的溶剂化结构工程代表了在高浓度电解质中开发耐腐蚀锂金属负极的实用策略。