Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Controllable synthesis and biomedical applications of bismuth-based nanospheres: enhanced photothermal therapy and CT imaging efficiency
Nanoscale ( IF 5.8 ) Pub Date : 2024-12-09 , DOI: 10.1039/d4nr04024d Dongxun Chen, Baowang Miao, Guidong Zhu, Yanjie Liang, Chengwei Wang
Nanoscale ( IF 5.8 ) Pub Date : 2024-12-09 , DOI: 10.1039/d4nr04024d Dongxun Chen, Baowang Miao, Guidong Zhu, Yanjie Liang, Chengwei Wang
The advancement and utilization of nano-scale biomaterials in the diagnosis and treatment of tumors have been notable over the last few decades, primarily owing to their appealing characteristics such as small particle size, adjustable properties, and remarkable biocompatibility. The creation of nanomaterials possessing versatility and a customizable nature, consequently, holds great promise for advancing healthcare and improving patient outcomes. Here, we report the controllable synthesis of monodisperse bismuth-based (Bi2S3, Bi, and Bi2O3) nanoparticles with uniform spherical morphology and size distribution, and evaluate their potential for CT imaging and photothermal therapy applications. Monodisperse Bi2S3 nanospheres were initially synthesized in aqueous solution using a low-temperature precipitation method. Subsequently, Bi and Bi2O3 nanospheres were prepared through the NaBH4 reduction and the H2O2 oxidation of the as-synthesized Bi2S3 templates, respectively. Photothermal conversion and CT imaging characterizations confirm the superiority of Bi nanospheres over Bi2S3 and Bi2O3 nanospheres in terms of their excellent photothermal conversion efficiency (∼40.10%) and CT contrast efficiency (∼34.32 HU mL mg−1). Furthermore, it is demonstrated that Bi nanospheres exhibit significant advantages in CT imaging and photothermal effects by using the glioma mouse model, notably achieving a tumor area temperature increase to 53.6 °C after near-infrared laser irradiation. This work furnishes theoretical and experimental evidence for bismuth-based nanomaterials as valuable tools in various biomedical applications.
中文翻译:
铋基纳米球的可控合成和生物医学应用:增强的光热治疗和 CT 成像效率
在过去的几十年里,纳米级生物材料在肿瘤诊断和治疗中的进步和利用已经显着,这主要是由于其吸引人的特性,如小粒径、可调节特性和卓越的生物相容性。因此,创造具有多功能性和可定制性的纳米材料,为推进医疗保健和改善患者预后带来了巨大的希望。在这里,我们报道了具有均匀球形形态和尺寸分布的单分散铋基(Bi2S3、Bi 和 Bi2O3)纳米颗粒的可控合成,并评估了它们在 CT 成像和光热治疗应用中的潜力。单分散 Bi2S3 纳米球最初是在水溶液中使用低温沉淀法合成的。随后,通过合成的 Bi2S3 模板的 NaBH4 还原和 H2O2 氧化分别制备了 Bi 和 Bi2O3 纳米球。光热转换和 CT 成像表征证实了 Bi 纳米球优于 Bi2S3 和 Bi2O3 纳米球,因为它们具有出色的光热转换效率 (∼40.10%) 和 CT 对比效率 (∼34.32 胡 mL mg-1)。 此外,通过使用胶质瘤小鼠模型,Bi 纳米球在 CT 成像和光热效应方面表现出显着优势,特别是近红外激光照射后肿瘤区域温度升高至 53.6 °C。这项工作为铋基纳米材料作为各种生物医学应用中的宝贵工具提供了理论和实验证据。
更新日期:2024-12-12
中文翻译:
铋基纳米球的可控合成和生物医学应用:增强的光热治疗和 CT 成像效率
在过去的几十年里,纳米级生物材料在肿瘤诊断和治疗中的进步和利用已经显着,这主要是由于其吸引人的特性,如小粒径、可调节特性和卓越的生物相容性。因此,创造具有多功能性和可定制性的纳米材料,为推进医疗保健和改善患者预后带来了巨大的希望。在这里,我们报道了具有均匀球形形态和尺寸分布的单分散铋基(Bi2S3、Bi 和 Bi2O3)纳米颗粒的可控合成,并评估了它们在 CT 成像和光热治疗应用中的潜力。单分散 Bi2S3 纳米球最初是在水溶液中使用低温沉淀法合成的。随后,通过合成的 Bi2S3 模板的 NaBH4 还原和 H2O2 氧化分别制备了 Bi 和 Bi2O3 纳米球。光热转换和 CT 成像表征证实了 Bi 纳米球优于 Bi2S3 和 Bi2O3 纳米球,因为它们具有出色的光热转换效率 (∼40.10%) 和 CT 对比效率 (∼34.32 胡 mL mg-1)。 此外,通过使用胶质瘤小鼠模型,Bi 纳米球在 CT 成像和光热效应方面表现出显着优势,特别是近红外激光照射后肿瘤区域温度升高至 53.6 °C。这项工作为铋基纳米材料作为各种生物医学应用中的宝贵工具提供了理论和实验证据。