当前位置:
X-MOL 学术
›
Future Gener. Comput. Syst.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
IoVST: An anomaly detection method for IoV based on spatiotemporal feature fusion
Future Generation Computer Systems ( IF 6.2 ) Pub Date : 2024-12-04 , DOI: 10.1016/j.future.2024.107636 Jinhui Cao, Xiaoqiang Di, Jinqing Li, Keping Yu, Liang Zhao
Future Generation Computer Systems ( IF 6.2 ) Pub Date : 2024-12-04 , DOI: 10.1016/j.future.2024.107636 Jinhui Cao, Xiaoqiang Di, Jinqing Li, Keping Yu, Liang Zhao
In the Internet of Vehicles (IoV) based on Cellular Vehicle-to-Everything (C-V2X) wireless communication, vehicles inform surrounding vehicles and infrastructure of their status by broadcasting basic safety messages, enhancing traffic management capabilities. Since anomalous vehicles can broadcast false traffic messages, anomaly detection is crucial for IoV. State-of-the-art methods typically utilize deep detection models to capture the internal spatial features of each message and the timing relationships of all messages in a sequence. However, since existing work neglects the local spatiotemporal relationship between messages broadcasted by the same vehicle, the spatiotemporal features of message sequences are not accurately described and extracted, resulting in inaccurate anomaly detection. To tackle these issues, a message attribute graph model (MAGM) is proposed, which accurately describes the spatiotemporal relationship of messages in the sequence using attribute graphs, including the internal spatial features of messages, the temporal order relationship of all messages, and the temporal order relationship of messages from the same vehicle. Furthermore, an anomaly detection method for IoV based on spatiotemporal feature fusion (IoVST) is proposed to detect anomalies accurately. IoVST aggregates the local spatiotemporal features of MAGM based on Transformer and extracts the global spatiotemporal features of message sequences through global time encoding and the self-attention mechanism. We conducted experimental evaluations on the VeReMi extension dataset. The F1 score and accuracy of IoVST are 1.68% and 1.92% higher than the optimal baseline method. The detection of every message can be accomplished in 0.7185 ms. In addition, the average accuracy of IoVST in four publicly available network intrusion detection datasets is 7.77% higher than the best baseline method, proving that our method can be applied well to other networks such as traditional IT networks, the Internet of Things, and industrial control networks.
中文翻译:
IoVST:一种基于时空特征融合的车联网异常检测方法
在基于蜂窝车联网 (C-V2X) 无线通信的车联网 (IoV) 中,车辆通过广播基本安全消息来通知周围的车辆和基础设施其状态,从而增强交通管理能力。由于异常车辆可以广播虚假的交通消息,因此异常检测对于车联网至关重要。最先进的方法通常利用深度检测模型来捕获每条消息的内部空间特征以及序列中所有消息的时序关系。然而,由于现有工作忽视了同一车辆广播的消息之间的局部时空关系,导致消息序列的时空特征没有得到准确的描述和提取,导致异常检测不准确。针对这些问题,该文提出一种消息属性图模型(MAGM),该模型利用属性图准确描述序列中消息的时空关系,包括消息的内部空间特征、所有消息的时间顺序关系以及来自同一车辆的消息的时间顺序关系。此外,提出了一种基于时空特征融合 (IoVST) 的车联网异常检测方法,以准确检测异常。IoVST 基于 Transformer 聚合 MAGM 的局部时空特征,并通过全局时间编码和自注意力机制提取消息序列的全局时空特征。我们对 VeReMi 扩展数据集进行了实验评估。IoVST 的 F1 评分和准确率分别比最佳基线方法高 1.68% 和 1.92%。每条消息的检测可以在 0.7185 ms 内完成。 此外,IoVST 在四个公开可用的网络入侵检测数据集中的平均准确率比最佳基线方法高 7.77%,证明我们的方法可以很好地应用于传统 IT 网络、物联网和工业控制网络等其他网络。
更新日期:2024-12-04
中文翻译:
IoVST:一种基于时空特征融合的车联网异常检测方法
在基于蜂窝车联网 (C-V2X) 无线通信的车联网 (IoV) 中,车辆通过广播基本安全消息来通知周围的车辆和基础设施其状态,从而增强交通管理能力。由于异常车辆可以广播虚假的交通消息,因此异常检测对于车联网至关重要。最先进的方法通常利用深度检测模型来捕获每条消息的内部空间特征以及序列中所有消息的时序关系。然而,由于现有工作忽视了同一车辆广播的消息之间的局部时空关系,导致消息序列的时空特征没有得到准确的描述和提取,导致异常检测不准确。针对这些问题,该文提出一种消息属性图模型(MAGM),该模型利用属性图准确描述序列中消息的时空关系,包括消息的内部空间特征、所有消息的时间顺序关系以及来自同一车辆的消息的时间顺序关系。此外,提出了一种基于时空特征融合 (IoVST) 的车联网异常检测方法,以准确检测异常。IoVST 基于 Transformer 聚合 MAGM 的局部时空特征,并通过全局时间编码和自注意力机制提取消息序列的全局时空特征。我们对 VeReMi 扩展数据集进行了实验评估。IoVST 的 F1 评分和准确率分别比最佳基线方法高 1.68% 和 1.92%。每条消息的检测可以在 0.7185 ms 内完成。 此外,IoVST 在四个公开可用的网络入侵检测数据集中的平均准确率比最佳基线方法高 7.77%,证明我们的方法可以很好地应用于传统 IT 网络、物联网和工业控制网络等其他网络。