当前位置:
X-MOL 学术
›
Future Gener. Comput. Syst.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Raising user awareness through unsupervised clustering of energy consumption habits
Future Generation Computer Systems ( IF 6.2 ) Pub Date : 2024-11-29 , DOI: 10.1016/j.future.2024.107623 Francesca Marcello, Michele Nitti, Virginia Pilloni
Future Generation Computer Systems ( IF 6.2 ) Pub Date : 2024-11-29 , DOI: 10.1016/j.future.2024.107623 Francesca Marcello, Michele Nitti, Virginia Pilloni
Climate change mitigation requires the urgent reduction of Greenhouse Gas (GHG) emissions, with the building sector as a significant contributor. This study develops a system to identify appliance profiles from smart meter data, enhancing energy consumption awareness and management. These profiles provide valuable insights into users’ consumption patterns and habits, enabling more accurate load consumption prediction and effective appliance scheduling strategies.
中文翻译:
通过无监督的能源消耗习惯集群来提高用户意识
缓解气候变化需要紧急减少温室气体 (GHG) 排放,而建筑行业是重要贡献者。本研究开发了一个系统,可以从智能电表数据中识别设备配置文件,从而提高能耗意识和管理。这些档案提供了有关用户消费模式和习惯的宝贵见解,从而实现更准确的负载消耗预测和有效的设备调度策略。
更新日期:2024-11-29
中文翻译:
通过无监督的能源消耗习惯集群来提高用户意识
缓解气候变化需要紧急减少温室气体 (GHG) 排放,而建筑行业是重要贡献者。本研究开发了一个系统,可以从智能电表数据中识别设备配置文件,从而提高能耗意识和管理。这些档案提供了有关用户消费模式和习惯的宝贵见解,从而实现更准确的负载消耗预测和有效的设备调度策略。