当前位置:
X-MOL 学术
›
J. Ind. Eng. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrospun PAN membrane encapsulated in PEO as a polymer electrolyte for lithium metal batteries
Journal of Industrial and Engineering Chemistry ( IF 5.9 ) Pub Date : 2024-12-03 , DOI: 10.1016/j.jiec.2024.11.054 Waqas Ul Arifeen, Bhargav Akkinepally, Zain Ul Abideen, Iftikhar Hussain, Masoom Raza Siddiqui, Shuang Li, Jaesool Shim, Tae Jo Ko
Journal of Industrial and Engineering Chemistry ( IF 5.9 ) Pub Date : 2024-12-03 , DOI: 10.1016/j.jiec.2024.11.054 Waqas Ul Arifeen, Bhargav Akkinepally, Zain Ul Abideen, Iftikhar Hussain, Masoom Raza Siddiqui, Shuang Li, Jaesool Shim, Tae Jo Ko
The novel two-step fabrication method of polymer electrolyte membrane was proposed. In the first step, the polyacrylonitrile nano fibrous membrane was prepared with the help of electrospinning. In the second step, the polyethylene oxide solution was prepared along with lithium salt and plasticizers. The solution was poured on the electrospun polyacrylonitrile to get polymer electrolyte membrane in the form of PAN membrane encapsulated in PEO. The polymer electrolyte membrane was boosted by the liquid LiPF6 before assembled in the lithium metal batteries. The polymer electrolyte membrane was compared with the commercial Celgard separator when assembled in coin cell for the application of lithium metal batteries. The polymer electrolyte membrane outperformed and exhibited a good ultimate tensile strength of 20 MPa and the better thermal stability of 97 % at 305 °C. Moreover, the polymer electrolyte membrane also exhibited excellent ionic conductivity of 1.2 mS cm−1 , good lithium-ion transference number of 0.57 and uniform lithium plating/stripping cycles for up to 500 cycles without internal short circuiting. The polymer electrolyte membrane represented outstanding rate capability and exhibited the good discharge capacity of 141 mA h g−1 after 100 cycles at 0.5 C rate.
中文翻译:
封装在 PEO 中的静电纺丝 PAN 膜,作为锂金属电池的聚合物电解质
提出了一种新颖的聚合物电解质膜两步法制备方法。第一步,借助静电纺丝制备聚丙烯腈纳米纤维膜。第二步,制备聚环氧乙烷溶液以及锂盐和增塑剂。将溶液倒在静电纺丝聚丙烯腈上,得到封装在 PEO 中的 PAN 膜形式的聚合物电解质膜。聚合物电解质膜在组装到锂金属电池中之前被液体 LiPF6 增强。将聚合物电解质膜与组装在纽扣电池中的商用 Celgard 隔膜进行比较,以用于锂金属电池。聚合物电解质膜的性能优异,在 305 °C 时表现出 20 MPa 的良好极限拉伸强度和 97 % 的更好的热稳定性。 此外,聚合物电解质膜还表现出 1.2 mS cm-1 的优异离子电导率、0.57 的良好锂离子转移数和高达 500 次循环的均匀镀锂/剥离循环,无内部短路。聚合物电解质膜代表了出色的倍率能力,在 0.5 C 倍率下循环 100 次后表现出 141 mA h g-1 的良好放电容量。
更新日期:2024-12-03
中文翻译:
封装在 PEO 中的静电纺丝 PAN 膜,作为锂金属电池的聚合物电解质
提出了一种新颖的聚合物电解质膜两步法制备方法。第一步,借助静电纺丝制备聚丙烯腈纳米纤维膜。第二步,制备聚环氧乙烷溶液以及锂盐和增塑剂。将溶液倒在静电纺丝聚丙烯腈上,得到封装在 PEO 中的 PAN 膜形式的聚合物电解质膜。聚合物电解质膜在组装到锂金属电池中之前被液体 LiPF6 增强。将聚合物电解质膜与组装在纽扣电池中的商用 Celgard 隔膜进行比较,以用于锂金属电池。聚合物电解质膜的性能优异,在 305 °C 时表现出 20 MPa 的良好极限拉伸强度和 97 % 的更好的热稳定性。 此外,聚合物电解质膜还表现出 1.2 mS cm-1 的优异离子电导率、0.57 的良好锂离子转移数和高达 500 次循环的均匀镀锂/剥离循环,无内部短路。聚合物电解质膜代表了出色的倍率能力,在 0.5 C 倍率下循环 100 次后表现出 141 mA h g-1 的良好放电容量。