当前位置:
X-MOL 学术
›
Appl. Math. Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mutual and total mutual visibility in hypercube-like graphs
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-12-03 , DOI: 10.1016/j.amc.2024.129216 Serafino Cicerone, Alessia Di Fonso, Gabriele Di Stefano, Alfredo Navarra, Francesco Piselli
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-12-03 , DOI: 10.1016/j.amc.2024.129216 Serafino Cicerone, Alessia Di Fonso, Gabriele Di Stefano, Alfredo Navarra, Francesco Piselli
Let G be a graph and X ⊆ V ( G ) . Then, vertices x and y of G are X -visible if there exists a shortest x , y -path where no internal vertices belong to X . The set X is a mutual-visibility set of G if every two vertices of X are X -visible, while X is a total mutual-visibility set if any two vertices from V ( G ) are X -visible. The cardinality of a largest mutual-visibility set (resp. total mutual-visibility set) is the mutual-visibility number (resp. total mutual-visibility number) μ ( G ) (resp. μ t ( G ) ) of G . It is known that computing μ ( G ) is an NP-complete problem, as well as μ t ( G ) . In this paper, we study the (total) mutual-visibility in hypercube-like networks (namely, hypercubes, Fibonacci cubes, cube-connected cycles, and butterflies). Concerning computing μ ( G ) , we provide approximation algorithms for hypercubes, Fibonacci cubes and cube-connected cycles, while we give an exact formula for butterflies. Concerning computing μ t ( G ) (in the literature, already studied in hypercubes), whereas we obtain exact formulae for both cube-connected cycles and butterflies.
中文翻译:
类超立方体图中的互和完全互能
设 G 为图形,X⊆V(G)。然后,如果存在最短的 x,y 路径,并且没有内部顶点属于 X,则 G 的顶点 x 和 y 是 X 可见的。如果 X 的每两个顶点都是 X 可见的,则集合 X 是 G 的互能可见集,如果 V(G) 中的任意两个顶点是 X 可见的,则 X 是总互能可见集。最大的互能可见集(或总互能可见集)的基数是 G 的互能数(或总互能可见数)μ(G) (或 μt(G))。众所周知,计算 μ(G) 是一个 NP 完备问题,μt(G) 也是如此。在本文中,我们研究了超立方体网络(即超立方体、斐波那契立方体、立方体连接环和蝴蝶)中的(总)互能性。关于计算 μ(G),我们为超立方体、斐波那契立方体和立方体连接循环提供了近似算法,同时我们给出了蝴蝶的精确公式。关于计算 μt(G)(在文献中,已经在超立方体中研究过),而我们获得了立方体连接循环和蝴蝶的精确公式。
更新日期:2024-12-03
中文翻译:
类超立方体图中的互和完全互能
设 G 为图形,X⊆V(G)。然后,如果存在最短的 x,y 路径,并且没有内部顶点属于 X,则 G 的顶点 x 和 y 是 X 可见的。如果 X 的每两个顶点都是 X 可见的,则集合 X 是 G 的互能可见集,如果 V(G) 中的任意两个顶点是 X 可见的,则 X 是总互能可见集。最大的互能可见集(或总互能可见集)的基数是 G 的互能数(或总互能可见数)μ(G) (或 μt(G))。众所周知,计算 μ(G) 是一个 NP 完备问题,μt(G) 也是如此。在本文中,我们研究了超立方体网络(即超立方体、斐波那契立方体、立方体连接环和蝴蝶)中的(总)互能性。关于计算 μ(G),我们为超立方体、斐波那契立方体和立方体连接循环提供了近似算法,同时我们给出了蝴蝶的精确公式。关于计算 μt(G)(在文献中,已经在超立方体中研究过),而我们获得了立方体连接循环和蝴蝶的精确公式。