当前位置:
X-MOL 学术
›
J. Innov. Knowl.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
How artificial intelligence-induced job insecurity shapes knowledge dynamics: the mitigating role of artificial intelligence self-efficacy
Journal of Innovation & Knowledge ( IF 15.6 ) Pub Date : 2024-11-14 , DOI: 10.1016/j.jik.2024.100590 Byung-Jik Kim, Min-Jik Kim
Journal of Innovation & Knowledge ( IF 15.6 ) Pub Date : 2024-11-14 , DOI: 10.1016/j.jik.2024.100590 Byung-Jik Kim, Min-Jik Kim
This research examines the intricate relationships between artificial intelligence (AI)-induced job insecurity, psychological safety, knowledge-hiding behavior, and self-efficacy in AI learning within organizational contexts. As AI technologies increasingly permeate the workplace, comprehending their impact on employee behavior and organizational dynamics becomes crucial. Based on several theories, we use a time-lagged research design to propose and test a moderated mediation model. We collected data from 402 employees across various industries in South Korea at three different time points. Our findings reveal that AI-induced job insecurity positively relates to knowledge-hiding behavior, directly and indirectly, via reduced psychological safety. Moreover, we discover that self-efficacy in AI learning moderates the relationship between AI-induced job insecurity and psychological safety, such that high self-efficacy buffers the harmful influence of job insecurity on psychological safety. These results enhance the existing literature on organizational technological change by clarifying the psychological processes through which AI implementation influences employee behavior. Our study highlights the critical role of psychological safety as a mediator and self-efficacy as a moderator in this process. These insights present significant implications for managers and organizations navigating the challenges of AI integration. They emphasize the need for strategies that foster psychological safety and enhance members’ confidence in their ability to adapt to AI technologies. Our research underscores the significance of considering both the technical and human aspects of AI implementation within organizational contexts.
中文翻译:
人工智能引起的工作不安全感如何塑造知识动态:人工智能自我效能感的缓解作用
本研究考察了人工智能 (AI) 引起的工作不安全感、心理安全、知识隐藏行为和组织环境中 AI 学习的自我效能感之间的复杂关系。随着 AI 技术越来越多地渗透到工作场所,了解它们对员工行为和组织动态的影响变得至关重要。基于几种理论,我们使用时间滞后研究设计来提出和测试一个有调节的中介模型。我们收集了韩国各个行业 402 名员工在三个不同时间点的数据。我们的研究结果表明,人工智能引起的工作不安全感通过降低心理安全感,直接或间接地与知识隐藏行为呈正相关。此外,我们发现 AI 学习中的自我效能感调节了 AI 诱导的工作不安全感与心理安全之间的关系,因此高自我效能感缓冲了工作不安全感对心理安全的有害影响。这些结果通过阐明 AI 实施影响员工行为的心理过程,增强了关于组织技术变革的现有文献。我们的研究强调了心理安全作为中介和自我效能作为调节因素在此过程中的关键作用。这些见解对管理者和组织应对 AI 集成挑战具有重要意义。他们强调需要制定策略来促进心理安全并增强成员对自己适应 AI 技术能力的信心。我们的研究强调了在组织环境中同时考虑 AI 实施的技术和人力方面的重要性。
更新日期:2024-11-14
中文翻译:
人工智能引起的工作不安全感如何塑造知识动态:人工智能自我效能感的缓解作用
本研究考察了人工智能 (AI) 引起的工作不安全感、心理安全、知识隐藏行为和组织环境中 AI 学习的自我效能感之间的复杂关系。随着 AI 技术越来越多地渗透到工作场所,了解它们对员工行为和组织动态的影响变得至关重要。基于几种理论,我们使用时间滞后研究设计来提出和测试一个有调节的中介模型。我们收集了韩国各个行业 402 名员工在三个不同时间点的数据。我们的研究结果表明,人工智能引起的工作不安全感通过降低心理安全感,直接或间接地与知识隐藏行为呈正相关。此外,我们发现 AI 学习中的自我效能感调节了 AI 诱导的工作不安全感与心理安全之间的关系,因此高自我效能感缓冲了工作不安全感对心理安全的有害影响。这些结果通过阐明 AI 实施影响员工行为的心理过程,增强了关于组织技术变革的现有文献。我们的研究强调了心理安全作为中介和自我效能作为调节因素在此过程中的关键作用。这些见解对管理者和组织应对 AI 集成挑战具有重要意义。他们强调需要制定策略来促进心理安全并增强成员对自己适应 AI 技术能力的信心。我们的研究强调了在组织环境中同时考虑 AI 实施的技术和人力方面的重要性。