当前位置:
X-MOL 学术
›
Phys. Lett. B
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
ER = EPR is an operational theorem
Physics Letters B ( IF 4.3 ) Pub Date : 2024-11-29 , DOI: 10.1016/j.physletb.2024.139150 Chris Fields, James F. Glazebrook, Antonino Marcianò, Emanuele Zappala
Physics Letters B ( IF 4.3 ) Pub Date : 2024-11-29 , DOI: 10.1016/j.physletb.2024.139150 Chris Fields, James F. Glazebrook, Antonino Marcianò, Emanuele Zappala
We show that in the operational setting of a two-agent, local operations, classical communication (LOCC) protocol, Alice and Bob cannot operationally distinguish monogamous entanglement from a topological identification of points in their respective local spacetimes, i.e. that ER = EPR can be recovered as an operational theorem. Our construction immediately implies that in this operational setting, the local topology of spacetime is observer-relative. It also provides a simple demonstration of the non-traversability of ER bridges. As our construction does not depend on an embedding geometry, it generalizes previous geometric approaches to ER = EPR.
中文翻译:
ER = EPR 是一个操作定理
我们表明,在双代理、本地操作、经典通信 (LOCC) 协议的操作设置中,Alice 和 Bob 无法在操作上区分一夫一妻制纠缠与其各自本地时空中点的拓扑识别,即 ER = EPR 可以作为操作定理恢复。我们的构造立即暗示,在这个操作环境中,时空的局部拓扑是观察者相对的。它还提供了 ER 桥的不可穿越性的简单演示。由于我们的构造不依赖于嵌入几何,因此它将以前的几何方法推广到 ER = EPR。
更新日期:2024-11-29
中文翻译:
ER = EPR 是一个操作定理
我们表明,在双代理、本地操作、经典通信 (LOCC) 协议的操作设置中,Alice 和 Bob 无法在操作上区分一夫一妻制纠缠与其各自本地时空中点的拓扑识别,即 ER = EPR 可以作为操作定理恢复。我们的构造立即暗示,在这个操作环境中,时空的局部拓扑是观察者相对的。它还提供了 ER 桥的不可穿越性的简单演示。由于我们的构造不依赖于嵌入几何,因此它将以前的几何方法推广到 ER = EPR。