当前位置: X-MOL 学术J. Comb. Theory A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On joint short minimal zero-sum subsequences over finite abelian groups of rank two
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2024-12-03 , DOI: 10.1016/j.jcta.2024.105984
Yushuang Fan, Qinghai Zhong

Let (G,+,0) be a finite abelian group and let ηN(G) be the smallest integer such that every sequence over G{0} of length has two joint short minimal zero-sum subsequences. In 2013, Gao et al. obtained that ηN(CnCn)=3n+1 for every n2 and solved the corresponding inverse problem for groups CpCp, where p is a prime. In this paper, we determine the precise value of ηN(G) for all finite abelian groups of rank 2 and resolve the corresponding inverse problem for groups CnCn, where n2, which confirms a conjecture of Gao, Geroldinger and Wang for all n2 except n=4.

中文翻译:


在秩为 2 的有限阿贝尔群上的联合短最小零和子序列上



设 (G,+,0) 为有限阿贝尔群,设 ηN(G) 为最小整数 l,使得长度为 l 的 G∖{0} 上的每个序列都有两个联合短最小零和子序列。2013 年,Gao 等人得到 ηN(Cn⊕Cn)=3n+1,对于每个 n≥2,并解决了 Cp⊕Cp 群的相应逆问题,其中 p 是素数。在本文中,我们确定了所有秩为 2 的有限阿贝尔群的 ηN(G) 的精确值,并解决了 Cn⊕Cn 群的相应逆问题,其中 n≥2,这证实了 Gao、Geroldinger 和 Wang 对除 n=4 之外的所有 n≥2 的猜想。
更新日期:2024-12-03
down
wechat
bug