当前位置:
X-MOL 学术
›
J. Comb. Theory A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Non-empty pairwise cross-intersecting families
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2024-11-26 , DOI: 10.1016/j.jcta.2024.105981 Yang Huang, Yuejian Peng
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2024-11-26 , DOI: 10.1016/j.jcta.2024.105981 Yang Huang, Yuejian Peng
Two families A and B are cross-intersecting if A ∩ B ≠ ∅ for any A ∈ A and B ∈ B . We call t families A 1 , A 2 , … , A t pairwise cross-intersecting families if A i and A j are cross-intersecting for 1 ≤ i < j ≤ t . Additionally, if A j ≠ ∅ for each j ∈ [ t ] , then we say that A 1 , A 2 , … , A t are non-empty pairwise cross-intersecting. Let A 1 ⊆ ( [ n ] k 1 ) , A 2 ⊆ ( [ n ] k 2 ) , … , A t ⊆ ( [ n ] k t ) be non-empty pairwise cross-intersecting families with t ≥ 2 , k 1 ≥ k 2 ≥ ⋯ ≥ k t , n ≥ k 1 + k 2 and d 1 , d 2 , … , d t be positive numbers. In this paper, we give a sharp upper bound of ∑ j = 1 t d j | A j | and characterize the families A 1 , A 2 , … , A t attaining the upper bound. Our results unifies results of Frankl and Tokushige (1992) [5] , Shi, Frankl and Qian (2022) [15] , Huang, Peng and Wang [10] , and Zhang and Feng [16] . Furthermore, our result can be applied in the treatment for some n < k 1 + k 2 while all previous known results do not have such an application. In the proof, a result of Kruskal and Katona is applied to allow us to consider only families A i whose elements are the first | A i | elements in lexicographic order. We bound ∑ i = 1 t d i | A i | by a single variable function f i ( R ) , where R is the last element of A i in lexicographic order, and verify that − f i ( R ) has unimodality which is stronger than the extremal result. We think that the unimodality of functions in this paper is interesting in its own, in addition to the extremal result.
中文翻译:
非空成对交叉相交族
如果 A∩B 对任何 A∈A 和 B∈B 为 AB≠∅,则两个族 A 和 B 是交叉相交的。如果 Ai 和 Aj 交叉相交 1≤i<j≤t,我们将 t 族称为 A1,A2,...,At 成对交叉相交。此外,如果每个 j∈[t] 的 Aj≠∅,那么我们说 A1,A2,...,At 是非空的成对交叉相交。设 A1⊆([n]k1),A2⊆([n]k2),...,At⊆([n]kt) 是非空的成对交叉交叉族,其中 t≥2、k1≥k2≥⋯≥kt、n≥k1+k2 和 d1,d2,...,dt 为正数。在本文中,我们给出了 ∑j=1tdj|Aj|并表征了达到上限的家系 A1、A2,...,At 的特征。我们的结果统一了Frankl和Tokushige(1992)[5]、Shi、Frankl和Qian (2022)[15]、Huang、Peng和Wang [10]以及Zhang和Feng [16]的结果。此外,我们的结果可以应用于一些 n<k1+k2 的治疗,而所有以前已知的结果都没有这样的应用。在证明中,应用 Kruskal 和 Katona 的结果以允许我们只考虑元素是第一个 |艾|元素。我们绑定 ∑i=1tdi|艾|通过单个变量函数 fi(R),其中 R 是字典顺序中 Ai 的最后一个元素,并验证 −fi(R) 具有比极值结果更强的单峰性。我们认为,除了极值结果之外,本文中函数的单模态本身也很有趣。
更新日期:2024-11-26
中文翻译:
非空成对交叉相交族
如果 A∩B 对任何 A∈A 和 B∈B 为 AB≠∅,则两个族 A 和 B 是交叉相交的。如果 Ai 和 Aj 交叉相交 1≤i<j≤t,我们将 t 族称为 A1,A2,...,At 成对交叉相交。此外,如果每个 j∈[t] 的 Aj≠∅,那么我们说 A1,A2,...,At 是非空的成对交叉相交。设 A1⊆([n]k1),A2⊆([n]k2),...,At⊆([n]kt) 是非空的成对交叉交叉族,其中 t≥2、k1≥k2≥⋯≥kt、n≥k1+k2 和 d1,d2,...,dt 为正数。在本文中,我们给出了 ∑j=1tdj|Aj|并表征了达到上限的家系 A1、A2,...,At 的特征。我们的结果统一了Frankl和Tokushige(1992)[5]、Shi、Frankl和Qian (2022)[15]、Huang、Peng和Wang [10]以及Zhang和Feng [16]的结果。此外,我们的结果可以应用于一些 n<k1+k2 的治疗,而所有以前已知的结果都没有这样的应用。在证明中,应用 Kruskal 和 Katona 的结果以允许我们只考虑元素是第一个 |艾|元素。我们绑定 ∑i=1tdi|艾|通过单个变量函数 fi(R),其中 R 是字典顺序中 Ai 的最后一个元素,并验证 −fi(R) 具有比极值结果更强的单峰性。我们认为,除了极值结果之外,本文中函数的单模态本身也很有趣。