当前位置: X-MOL 学术New Phytol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonphotochemical quenching does not alter the relationship between sun-induced fluorescence and gross primary production under heatwave
New Phytologist ( IF 8.3 ) Pub Date : 2024-12-07 , DOI: 10.1111/nph.20312
Michal Antala, Radosław Juszczak, Anshu Rastogi

A comment on Martini et al. (2022): ‘Heatwave breaks down the linearity between sun-induced fluorescence and gross primary production’

Sun-induced fluorescence (SIF) is a remote sensing signal that has recently received substantial attention due to its origin from plants' photosynthetic apparatus, which makes it more related to photosynthesis than reflectance-based vegetation indices (Mohammed et al., 2019). Upon absorption by the light-harvesting complex of photosystems, the energy can be used by four major paths: (1) photochemistry (p), which mainly, but not exclusively, results in gross primary production (GPP; or simply photosynthetic assimilation of carbon); (2) light-intensity-dependent heat dissipation, commonly referred to as nonphotochemical quenching (npq); (3) light-intensity-independent (or basal) heat dissipation (d); and (4) fluorescence (f), which is, in natural conditions, termed SIF. These four processes compete for the absorbed energy, and p and npq together normally constitute c. 80% of the energy use (Lazár, 2015). Only 1–2% of absorbed energy is normally emitted as f. The widespread notion of using this small proportion of emitted energy for the estimation of photosynthesis originates in the covariance of f and p that originate from reaction centres (RCs) due to npq that decreases the amount of energy reaching RCs, therefore available for further partitioning into p, f and d (Van Der Tol et al., 2014; Magney et al., 2020). However, the assumption of the proportional impact of npq on f and p and the stable share of p being used for GPP is close to the truth only in optimal conditions. The range of environmental stresses affecting plants decreases the SIF vs GPP correlation, and during severe stress, this correlation may cease to exist completely (Wieneke et al., 2018). One of the most impactful studies in regard to not only reporting the broken SIF vs GPP correlation during heat stress but also interpreting the plant physiology behind the broken correlation by leaf-level active Chl f measurements was published by Martini et al. (2022). However, it could not escape our attention, that this study somewhat misinterpreted the results and not very correctly assigned the broken correlation to nonphotochemical quenching (NPQ) of maximal fluorescence saturation. Therefore, we wrote this short commentary to point out overlooked factors from the article of Martini et al. (2022), its supplementary materials and raw data (10.5281/zenodo.5773208), and bring an impulse for a different interpretation of this interesting and important dataset.



中文翻译:


非光化学猝灭不会改变太阳诱导的荧光与热浪下总初级产生之间的关系



对 Martini 等 人的评论(2022 年):“热浪打破了太阳诱导荧光和总初级生产之间的线性”


太阳诱导荧光 (SIF) 是一种遥感信号,由于它起源于植物的光合作用装置,最近受到了大量关注,这使得它与光合作用的关系比基于反射率的植被指数更相关(Mohammed et al., 2019)。在被光系统的光捕获复合物吸收后,能量可以通过四个主要途径使用:(1) 光化学 (p),这主要但不限于导致总初级生产 (GPP;或简单地导致碳的光合同化);(2) 光强度依赖性散热,通常称为非光化学淬灭 (NPQ);(3) 与光强度无关(或基础)散热 (d);(4) 荧光 (f),在自然条件下称为 SIF。这四个过程争夺吸收的能量,pnpq 通常一起构成 c。80% 的能源使用(Lazár,2015 年)。通常只有 1-2% 的吸收能量以 f 的形式发射。使用这一小比例的发射能量来估计光合作用的广泛概念起源于 fp 的协方差,这些协方差来自反应中心 (RC),因为 npq 减少了到达 RC 的能量,因此可用于进一步划分为 pfd(Van Der Tol 等 人2014 年;Magney et al., 2020)。然而,只有在最佳条件下,npqfp 的比例影响以及用于 GPP 的 p 的稳定份额的假设才接近事实。 影响植物的环境胁迫范围降低了 SIF 与 GPP 的相关性,在严重胁迫期间,这种相关性可能完全不复存在(Wieneke et al., 2018)。Martini 等 人发表了最具影响力的研究之一,不仅报告了热胁迫期间断裂的 SIF 与 GPP 相关性,还通过叶片水平的活性 Chl f 测量解释了断裂相关性背后的植物生理学。(2022). 然而,我们无法逃脱我们的注意,这项研究在某种程度上误解了结果,并且没有非常正确地将最大荧光饱和度的非光化学猝灭 (NPQ) 的断裂相关性分配。因此,我们写了这篇简短的评论,以指出 Martini 等 人文章中被忽视的因素。(2022 年)、其补充材料和原始数据 (10.5281/zenodo.5773208),并为对这个有趣而重要的数据集进行不同的解释带来了动力。

更新日期:2024-12-07
down
wechat
bug