当前位置: X-MOL 学术J. Mech. Phys. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Topological state switches in hard-magnetic meta-structures
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-12-07 , DOI: 10.1016/j.jmps.2024.106001
Quan Zhang, Stephan Rudykh

We propose a metamaterial design principle that enables the remote switching of topological states. Dynamic breaking of space-inversion symmetry is achieved through the intricate design of magnetic spring structures within the metamaterial building blocks, whose stiffness can be remotely altered using an external magnetic field. We develop a mathematical model to predict the magnetic field-induced deformation and tangential stiffness of the spring structure with hard-magnetic constituent phase. Building on the predictive model, we explore the necessary conditions – including the magnetization distribution and the direction of the actuating magnetic field – that enable magnetically tunable stiffness. To demonstrate the functionality of topological state switching, we apply the proposed magnetic spring to the topological metamaterial design where a tunable stiffness landscape is essential for reversible topological phase transition. Our mathematical modeling indicates that we can remotely modulate both the dispersion properties and the topological invariants (including Zak phase and winding number) of the underlying bands in the proposed metamaterial system. Finally, we show that this tunable capability extends to controlling topologically protected edge and interface states within the finite-sized metamaterial lattice. Our design strategy for the switching of topological state paves the way for the realization of smart and intelligent metamaterials featuring tunable and active wave dynamics. It also highlights the potential of magneto-mechanical coupling in the design of advanced functional materials.

中文翻译:


硬磁超结构中的拓扑状态开关



我们提出了一种超材料设计原理,可实现拓扑状态的远程切换。空间反转对称性的动态打破是通过超材料构建块内磁弹簧结构的复杂设计实现的,其刚度可以使用外部磁场远程改变。我们开发了一个数学模型来预测具有硬磁成分相的弹簧结构的磁场诱导变形和切向刚度。在预测模型的基础上,我们探索了实现磁可调刚度的必要条件,包括磁化分布和驱动磁场的方向。为了演示拓扑状态切换的功能,我们将提出的磁弹簧应用于拓扑超材料设计,其中可调刚度景观对于可逆拓扑相变至关重要。我们的数学模型表明,我们可以远程调制所提出的超材料系统中底层带的色散特性和拓扑不变量(包括 Zak 相和绕组数)。最后,我们表明这种可调功能扩展到控制有限尺寸的超材料晶格内受拓扑保护的边缘和界面状态。我们的拓扑状态切换设计策略为实现具有可调谐和主动波动力学的智能超材料铺平了道路。它还强调了磁机械耦合在先进功能材料设计中的潜力。
更新日期:2024-12-07
down
wechat
bug