当前位置:
X-MOL 学术
›
J. Mech. Phys. Solids
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rupture mechanics of blood clot fibrin fibers: A coarse-grained model study
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-12-02 , DOI: 10.1016/j.jmps.2024.105998 Beikang Gu, Jixin Hou, Nicholas Filla, He Li, Xianqiao Wang
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-12-02 , DOI: 10.1016/j.jmps.2024.105998 Beikang Gu, Jixin Hou, Nicholas Filla, He Li, Xianqiao Wang
Thrombosis, when occurring undesirably, disrupts normal blood flow and poses significant medical challenges. As the skeleton of blood clots, fibrin fibers play a vital role in the formation and fragmentation of blood clots. Thus, studying the deformation and fracture characteristics of fibrin fiber networks is the key factor to solve a series of health problems caused by thrombosis. This study employs a coarse-grained model of fibrin fibers to investigate the rupture dynamics of fibrin fiber networks. We propose a new method for generating biomimetic fibrin fiber networks to simulate their spatial geometry in blood clots. We examine the mechanical characteristics and rupture behaviors of fibrin fiber networks under various conditions, including fiber junction density, fiber tortuosity, fiber strength, and the strain limit of single fiber rupture in both tension and simple shear cases. Our findings indicate that the stress-strain relationship of the fibrin fiber network follows a similar pattern to that of individual fibers, characterized by a shortened entropy stretching phase and an extended transition phase. Fiber junction density, fiber strength, and single fiber rupture limit predominantly influence the stress of the network, while fiber tortuosity governs the strain behavior. The availability of more fibers in shear cases to bear the load results in delayed rupture compared to tension cases. With consideration of different factors of fibrin fibers in networks, this work provides a more realistic description of the mechanical deformation process in fibrin fiber networks, offering new insights into their rupture and failure mechanisms. These findings could inspire novel approaches and methodologies for understanding the fracture of fibrin networks during a surgical thrombectomy.
中文翻译:
血凝块纤维蛋白纤维的破裂力学:粗粒模型研究
血栓形成如果不受欢迎地发生,会破坏正常的血液流动并带来重大的医疗挑战。作为血栓的骨架,纤维蛋白纤维在血栓的形成和碎裂中起着至关重要的作用。因此,研究纤维蛋白纤维网络的变形和断裂特性是解决血栓形成引起的一系列健康问题的关键因素。本研究采用纤维蛋白纤维的粗粒度模型来研究纤维蛋白纤维网络的断裂动力学。我们提出了一种生成仿生纤维蛋白纤维网络的新方法,以模拟它们在血栓中的空间几何形状。我们研究了纤维蛋白纤维网络在各种条件下的机械特性和断裂行为,包括纤维结密度、纤维弯曲度、纤维强度以及拉伸和简单剪切情况下单纤维断裂的应变极限。我们的研究结果表明,纤维蛋白纤维网络的应力-应变关系遵循与单个纤维相似的模式,其特征是熵拉伸阶段缩短和过渡阶段延长。纤维结密度、纤维强度和单纤维断裂极限主要影响网络的应力,而纤维弯曲度控制应变行为。与拉伸情况相比,在剪切情况下有更多的纤维来承受载荷,这会导致延迟断裂。考虑到纤维蛋白纤维在网络中的不同因素,这项工作更真实地描述了纤维蛋白网络中机械变形过程,为它们的断裂和失效机制提供了新的见解。 这些发现可能会激发新的方法和方法来理解手术血栓切除术中纤维蛋白网络的断裂。
更新日期:2024-12-02
中文翻译:
血凝块纤维蛋白纤维的破裂力学:粗粒模型研究
血栓形成如果不受欢迎地发生,会破坏正常的血液流动并带来重大的医疗挑战。作为血栓的骨架,纤维蛋白纤维在血栓的形成和碎裂中起着至关重要的作用。因此,研究纤维蛋白纤维网络的变形和断裂特性是解决血栓形成引起的一系列健康问题的关键因素。本研究采用纤维蛋白纤维的粗粒度模型来研究纤维蛋白纤维网络的断裂动力学。我们提出了一种生成仿生纤维蛋白纤维网络的新方法,以模拟它们在血栓中的空间几何形状。我们研究了纤维蛋白纤维网络在各种条件下的机械特性和断裂行为,包括纤维结密度、纤维弯曲度、纤维强度以及拉伸和简单剪切情况下单纤维断裂的应变极限。我们的研究结果表明,纤维蛋白纤维网络的应力-应变关系遵循与单个纤维相似的模式,其特征是熵拉伸阶段缩短和过渡阶段延长。纤维结密度、纤维强度和单纤维断裂极限主要影响网络的应力,而纤维弯曲度控制应变行为。与拉伸情况相比,在剪切情况下有更多的纤维来承受载荷,这会导致延迟断裂。考虑到纤维蛋白纤维在网络中的不同因素,这项工作更真实地描述了纤维蛋白网络中机械变形过程,为它们的断裂和失效机制提供了新的见解。 这些发现可能会激发新的方法和方法来理解手术血栓切除术中纤维蛋白网络的断裂。