当前位置:
X-MOL 学术
›
J. Mech. Phys. Solids
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Computational investigation into XRD peak broadening effects with discrete dislocation dynamics in additively manufactured 316L stainless steel
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-11-28 , DOI: 10.1016/j.jmps.2024.105970 Dylan Madisetti, Markus Sudmanns, Christopher D. Stiles, Jaafar A. El-Awady
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-11-28 , DOI: 10.1016/j.jmps.2024.105970 Dylan Madisetti, Markus Sudmanns, Christopher D. Stiles, Jaafar A. El-Awady
X-ray diffraction (XRD) line profile analysis is a powerful material characterization tool that has been in use for over 100 years (Etter and Dinnebier, 2014; Laue, 1901) With increases in available computing power, it is now possible to simulate X-ray diffraction experiments from atomic and meso-scale simulations. Through this work, a high-throughput framework for simulating XRD line profiles of alloyed crystals with high dislocation densities was developed. This approach considers the effects of temperature, chemistry, polarization, and dislocations on simulated X-ray diffraction. The framework is based on the theory of X-ray ray-tracing and can produce diffraction spots and powder diffraction profiles from dislocation microstructure predicted from three-dimensional (3D) discrete dislocation dynamics (DDD) simulations. Utilizing the DDD simulations of additively manufactured (AM) 316L stainless steel during cool-down at 700 K, this methodology was shown to effectively predict the peak broadening and dimming phenomena in XRD line profiles at the single crystal ≈ 10 μ m length scale as predicted by Williamson–Hall and Warren–Averbach. Furthermore, we develop the Alloy-Adjusted Williamson–Hall and Alloy-Adjusted Warren–Averbach relationships which incorporate the lattice strain due to alloying and the chemistry of the investigated material. Ultimately, this work provides a framework for producing and analyzing the XRD line profiles of alloyed metals with complex dislocation structures, providing insights into the scattering process and enabling quantitative comparison between theory and characterization.
中文翻译:
增材制造 316L 不锈钢中离散位错动力学的 XRD 峰展宽效应的计算研究
X 射线衍射 (XRD) 线轮廓分析是一种强大的材料表征工具,已经使用了 100 多年(Etter 和 Dinnebier,2014 年;Laue, 1901) 随着可用计算能力的增加,现在可以从原子和介尺度模拟中模拟 X 射线衍射实验。通过这项工作,开发了一种高通量框架,用于模拟具有高位错密度的合金晶体的 XRD 线剖面。这种方法考虑了温度、化学、偏振和位错对模拟 X 射线衍射的影响。该框架基于 X 射线追踪理论,可以从三维 (3D) 离散位错动力学 (DDD) 模拟预测的位错微观结构中产生衍射点和粉末衍射剖面。利用增材制造 (AM) 316L 不锈钢在 700 K 冷却期间的 DDD 模拟,该方法被证明可以有效地预测 Williamson-Hall 和 Warren-Averbach 预测的单晶 ≈10μm 长度尺度上 XRD 线剖面中的峰展宽和变暗现象。此外,我们开发了合金调整的 Williamson-Hall 和合金调整的 Warren-Averbach 关系,其中包括由于合金化和所研究材料的化学性质引起的晶格应变。最终,这项工作为生成和分析具有复杂位错结构的合金金属的 XRD 线剖面提供了一个框架,提供了对散射过程的见解,并实现了理论和表征之间的定量比较。
更新日期:2024-11-28
中文翻译:
增材制造 316L 不锈钢中离散位错动力学的 XRD 峰展宽效应的计算研究
X 射线衍射 (XRD) 线轮廓分析是一种强大的材料表征工具,已经使用了 100 多年(Etter 和 Dinnebier,2014 年;Laue, 1901) 随着可用计算能力的增加,现在可以从原子和介尺度模拟中模拟 X 射线衍射实验。通过这项工作,开发了一种高通量框架,用于模拟具有高位错密度的合金晶体的 XRD 线剖面。这种方法考虑了温度、化学、偏振和位错对模拟 X 射线衍射的影响。该框架基于 X 射线追踪理论,可以从三维 (3D) 离散位错动力学 (DDD) 模拟预测的位错微观结构中产生衍射点和粉末衍射剖面。利用增材制造 (AM) 316L 不锈钢在 700 K 冷却期间的 DDD 模拟,该方法被证明可以有效地预测 Williamson-Hall 和 Warren-Averbach 预测的单晶 ≈10μm 长度尺度上 XRD 线剖面中的峰展宽和变暗现象。此外,我们开发了合金调整的 Williamson-Hall 和合金调整的 Warren-Averbach 关系,其中包括由于合金化和所研究材料的化学性质引起的晶格应变。最终,这项工作为生成和分析具有复杂位错结构的合金金属的 XRD 线剖面提供了一个框架,提供了对散射过程的见解,并实现了理论和表征之间的定量比较。