当前位置: X-MOL 学术Autom. Constr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plug-and-play method for segmenting concrete bridge cracks using the segment anything model with a fractal dimension matrix prompt
Automation in Construction ( IF 9.6 ) Pub Date : 2024-12-04 , DOI: 10.1016/j.autcon.2024.105906
Shuai Teng, Airong Liu, Zuxiang Situ, Bingcong Chen, Zhihua Wu, Yixiao Zhang, Jialin Wang

This paper addresses the diverse scenarios of bridge crack segmentation, proposing a method for detecting cracks on land and underwater using the Segment Anything Model (SAM) prompted by a fractal dimension matrix. The proposed method does not require additional training and obtains fractal feature information of cracks through fractal dimension matrix calculation. These feature information serve as prompt information for SAM to establish a plug-and-play crack segmentation method. The method achieves high detection performance, with a mean accuracy, IoU, and F1-Score of 99.6 %, 0.89, and 0.95 for land cracks, and 97.6 %, 0.89, and 0.95 for underwater cracks, respectively. This represents a significant improvement over methods that do not use the fractal dimension matrix for SAM prompts. Additionally, the method requires no additional training, showcasing excellent generalizability and practical potential for real-world applications in diverse environments.

中文翻译:


使用带有分形维数矩阵提示的 Segment anything 模型对混凝土桥梁裂缝进行分割的即插即用方法



本文讨论了桥梁裂缝分割的不同场景,提出了一种使用分形维数矩阵提示的 Segment Anything Model (SAM) 检测陆地和水下裂缝的方法。所提出的方法不需要额外的训练,通过分形维数矩阵计算获得裂纹的分形特征信息。这些特征信息可作为 SAM 建立即插即用破解分割方法的提示信息。该方法具有较高的探测性能,陆地裂缝的平均准确率、IoU 和 F1-Score 分别为 99.6 %、0.89 和 0.95,水下裂缝的平均精度分别为 97.6 %、0.89 和 0.95。这代表了对 SAM 提示不使用分形维数矩阵的方法的显著改进。此外,该方法不需要额外的培训,展示了在不同环境中实际应用中的出色泛化性和实际应用潜力。
更新日期:2024-12-04
down
wechat
bug