当前位置:
X-MOL 学术
›
Automatica
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
On stability of model predictive control with finite-control-set constraints and disturbances
Automatica ( IF 4.8 ) Pub Date : 2024-10-18 , DOI: 10.1016/j.automatica.2024.111982 Yimeng Li, Jun Yang, Jinhao Liu, Xinming Wang, Shihua Li
Automatica ( IF 4.8 ) Pub Date : 2024-10-18 , DOI: 10.1016/j.automatica.2024.111982 Yimeng Li, Jun Yang, Jinhao Liu, Xinming Wang, Shihua Li
This paper investigates the stability issues of model predictive control (MPC) for discrete-time linear systems with state and finite control set (FCS) constraints subject to time-varying disturbances. A new FCS-MPC design and analysis framework is developed using the disturbance estimation approaches and the tool of robust positive invariant (RPI) set sequence. It encompasses a discrete-time exogenous signal observer that helps characterize the estimated dynamics within well-defined bounds and a quantized control law that adheres to both state and input constraints. The practical asymptotical stability of the resulting closed-loop system is shown to be guaranteed, and the tracking error remains uniformly bounded. Finally, simulation results of a numerical example validate the effectiveness of the proposed method.
中文翻译:
有限控制集约束和干扰下模型预测控制的稳定性
本文研究了具有受时变干扰的状态和有限控制集 (FCS) 约束的离散时间线性系统的模型预测控制 (MPC) 的稳定性问题。使用干扰估计方法和稳健正不变 (RPI) 集合序列工具开发了一种新的 FCS-MPC 设计和分析框架。它包括一个离散时间外生信号观察器,有助于在明确定义的范围内描述估计的动态,以及一个遵守状态和输入约束的量化控制律。结果表明,所得闭环系统的实际渐近稳定性得到了保证,并且跟踪误差保持均匀有界。最后,数值算例的仿真结果验证了所提方法的有效性。
更新日期:2024-10-18
中文翻译:
有限控制集约束和干扰下模型预测控制的稳定性
本文研究了具有受时变干扰的状态和有限控制集 (FCS) 约束的离散时间线性系统的模型预测控制 (MPC) 的稳定性问题。使用干扰估计方法和稳健正不变 (RPI) 集合序列工具开发了一种新的 FCS-MPC 设计和分析框架。它包括一个离散时间外生信号观察器,有助于在明确定义的范围内描述估计的动态,以及一个遵守状态和输入约束的量化控制律。结果表明,所得闭环系统的实际渐近稳定性得到了保证,并且跟踪误差保持均匀有界。最后,数值算例的仿真结果验证了所提方法的有效性。