当前位置:
X-MOL 学术
›
Comput. Methods Appl. Mech. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multi-patch Isogeometric convolution hierarchical deep-learning neural network
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2024-11-30 , DOI: 10.1016/j.cma.2024.117582 Lei Zhang, Chanwook Park, Thomas J.R. Hughes, Wing Kam Liu
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2024-11-30 , DOI: 10.1016/j.cma.2024.117582 Lei Zhang, Chanwook Park, Thomas J.R. Hughes, Wing Kam Liu
A seamless integration of neural networks with Isogeometric Analysis (IGA) was first introduced in [1] under the name of Hierarchical Deep-learning Neural Network (HiDeNN) and has systematically evolved into Isogeometric Convolution HiDeNN (in short, C-IGA) [2]. C-IGA achieves higher order approximations without increasing the degree of freedom. Due to the Kronecker delta property of C-IGA shape functions, one can refine the mesh in the physical domain like standard finite element method (FEM) while maintaining the exact geometrical mapping of IGA. In this article, C-IGA theory is generalized for multi-CAD-patch systems with a mathematical investigation of the compatibility conditions at patch interfaces and convergence of error estimates. Two compatibility conditions (nodal compatibility and G 0 (i.e., global C 0 ) compatibility) are presented and validated through numerical examples.
中文翻译:
多面片等几何卷积分层深度学习神经网络
神经网络与等几何分析 (IGA) 的无缝集成在 [1] 中首次以分层深度学习神经网络 (HiDeNN) 的名义引入,并已系统地演变为等几何卷积 HiDeNN(简称 C-IGA)[2]。C-IGA 在不增加自由度的情况下实现更高阶的近似。由于 C-IGA 形状函数的 Kronecker delta 特性,可以像标准有限元法 (FEM) 一样在物理域中细化网格,同时保持 IGA 的精确几何映射。在本文中,C-IGA 理论被推广到多 CAD 贴片系统中,对贴片界面的兼容性条件和误差估计的收敛进行了数学研究。通过数值示例提出并验证了两个相容性条件 (节点相容性和 G0 (即全局 C0) 相容性)。
更新日期:2024-11-30
中文翻译:
多面片等几何卷积分层深度学习神经网络
神经网络与等几何分析 (IGA) 的无缝集成在 [1] 中首次以分层深度学习神经网络 (HiDeNN) 的名义引入,并已系统地演变为等几何卷积 HiDeNN(简称 C-IGA)[2]。C-IGA 在不增加自由度的情况下实现更高阶的近似。由于 C-IGA 形状函数的 Kronecker delta 特性,可以像标准有限元法 (FEM) 一样在物理域中细化网格,同时保持 IGA 的精确几何映射。在本文中,C-IGA 理论被推广到多 CAD 贴片系统中,对贴片界面的兼容性条件和误差估计的收敛进行了数学研究。通过数值示例提出并验证了两个相容性条件 (节点相容性和 G0 (即全局 C0) 相容性)。