当前位置: X-MOL 学术Mater. Today Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Solar-boosted electrocatalytic oxygen evolution via a 2D/2D heterostructure constructed by integrating reduced graphene oxide on NiFe-LDH nanosheets
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-12-06 , DOI: 10.1016/j.mtphys.2024.101619
Qian Liu, Jinyi Wang, Yuxia Zhang, Wa Gao, Longhao Cui, Jingxiang Low, Haiming Zhang

Multi-physical fields driven catalysis for energy conversion has attracted increasing research interests. Introducing solar energy to boost the oxygen evolution reaction (OER) activity of electrocatalyst via photothermal effect is an effective way to reduce energy consumption of water electrolysis. However, it still remains challenging to design advanced catalyst that can fully utilize the energy of each physical field to promote the kinetically sluggish OER. Herein, we report a two-dimensional (2D)/2D heterostructure constructed by integrating the reduced graphene oxide (rGO) with high photothermal conversion efficiency on the surface of catalytically active nickel-iron layered bimetallic hydroxide (NiFe-LDH) nanosheet arrays. The 2D/2D heterointerface in rGO/NiFe-LDH enables the intense contact between rGO and NiFe-LDH, facilitating the generated local heat transfer and significantly reducing the overpotential towards OER under solar irradiation. The temperature of rGO/NiFe-LDH composite supported on carbon paper (rGO/NiFe-LDH/CP) rises rapidly from 30.0 °C to 58.5 °C after exposure to one-sun irradiation. Remarkably, the rGO/NiFe-LDH/CP exhibits a low overpotential of 197 mV to achieve the current density of 10 mA cm−2 for OER under solar irradiation. Furthermore, the Tafel slope of rGO/NiFe-LDH/CP decreases from 63.4 to 51.5 mV dec−1 with light irradiation, suggesting the integrated rGO photothermal layer not only reduce the thermodynamic barrier of OER but also accelerate the OER kinetics. In addition, the rGO can accelerate the charge transfer at the catalyst surface and increase the electrochemical specific surface area, all of which contributes to the enhanced electrocatalytic activity for OER. The solar-boosted electrocatalysis towards OER also shows good stability, indicating opportunities for practical application.

中文翻译:


通过在 NiFe-LDH 纳米片上集成还原氧化石墨烯,通过 2D/2D 异质结构构建太阳能增强电催化析氧



多物理场驱动的能量转换催化吸引了越来越多的研究兴趣。引入太阳能,通过光热效应提高电催化剂的析氧反应 (OER) 活性,是降低电解水能耗的有效方法。然而,设计出能够充分利用每个物理场能量的先进催化剂来促进动力学迟缓的 OER 仍然具有挑战性。在此,我们报道了一种二维 (2D)/2D 异质结构,通过在催化活性镍铁层状双金属氢氧化物 (NiFe-LDH) 纳米片阵列表面集成具有高光热转换效率的还原氧化石墨烯 (rGO) 构建。rGO/NiFe-LDH 中的 2D/2D 异质界面使 rGO 和 NiFe-LDH 之间的强烈接触成为可能,促进了产生的局部热传递,并显著降低了太阳照射下对 OER 的过电位。碳纸负载的rGO/NiFe-LDH复合材料(rGO/NiFe-LDH/CP)在单日照射下温度从30.0 °C迅速上升到58.5 °C。值得注意的是,rGO/NiFe-LDH/CP 表现出 197 mV 的低过电位,可在太阳照射下实现 10 mA cm-2 的 OER 电流密度。此外,在光照射下,rGO/NiFe-LDH/CP 的塔菲尔斜率从 63.4 mV dec-1 降低到 51.5 mV dec-1,表明集成的 rGO 光热层不仅降低了 OER 的热力学屏障,还加速了 OER 动力学。此外,rGO 可以加速催化剂表面的电荷转移并增加电化学比表面积,所有这些都有助于增强 OER 的电催化活性。 太阳能助推电催化对 OER 也显示出良好的稳定性,为实际应用提供了机会。
更新日期:2024-12-06
down
wechat
bug