当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Li-Fe anti-sites defects in LiFePO4: Mechanism, characterization and cathode-regeneration applications
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-12-05 , DOI: 10.1016/j.ensm.2024.103947 Zihao Zeng, Hai Lei, Xiangjin Lu, Chao Zhu, Yunpeng Wen, Jinliang Zhu, Xiaobo Ji, Wei Sun, Yue Yang, Peng Ge
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-12-05 , DOI: 10.1016/j.ensm.2024.103947 Zihao Zeng, Hai Lei, Xiangjin Lu, Chao Zhu, Yunpeng Wen, Jinliang Zhu, Xiaobo Ji, Wei Sun, Yue Yang, Peng Ge
Li-Fe anti-site defects, as an inherent defect in the crystal structures of LiFePO4 , are inevitably introduced during synthesis and battery cycling. Traditionally, it was seen as a barrier to Li ions diffusion, but it was proved that Li-Fe anti-site defects can enhance anisotropic diffusion and optimize energy storage through new diffusion channels, which was related to a synergistic effect with tensile stress traits. However, the detailed mechanism among Li-Fe anti-site defects and electrochemical performance remains complex, potentially involving other properties, such as magnetism performance. Series of effective characterization technologies, including FITR, XRD Rietveld refinement, and STEM, offer diverse methods to analyze these defects, each with unique merits. Tailoring the concentration of Li-Fe anti-site defects is crucial for improving the electrochemical properties of LiFePO4 , and strategies such as ion doping, synthesis control, and structure engineering are essential. These insights are valuable for the commercial production and recycling of LiFePO4 . Despite progress, the impacts of Li-Fe anti-site defects on energy storage remain debated, underlining the need for further research into their relationships with material properties. Optimizing the synthesis and recycling processes by controlling Li-Fe anti-site defects promises a more efficient and sustainable energy storage system construction.
中文翻译:
LiFePO4 中的 Li-Fe 反位点缺陷:机理、表征和阴极再生应用
Li-Fe 反位点缺陷作为 LiFePO4 晶体结构的固有缺陷,在合成和电池循环过程中不可避免地被引入。传统上,它被视为锂离子扩散的障碍,但事实证明 Li-Fe 反位点缺陷可以通过新的扩散通道增强各向异性扩散并优化能量存储,这与与拉伸应力特性的协同效应有关。然而,Li-Fe 反位缺陷和电化学性能之间的详细机制仍然很复杂,可能涉及其他性质,例如磁性能。一系列有效的表征技术,包括 FITR、XRD Rietveld 细化和 STEM,提供了多种方法来分析这些缺陷,每种方法都有其独特的优点。调整 Li-Fe 反位点缺陷的浓度对于改善 LiFePO4 的电化学性能至关重要,离子掺杂、合成控制和结构工程等策略至关重要。这些见解对于 LiFePO4 的商业生产和回收很有价值。尽管取得了进展,但 Li-Fe 反位点缺陷对储能的影响仍然存在争议,这凸显了进一步研究它们与材料特性关系的必要性。通过控制 Li-Fe 反位点缺陷来优化合成和回收过程有望实现更高效和可持续的储能系统建设。
更新日期:2024-12-05
中文翻译:
LiFePO4 中的 Li-Fe 反位点缺陷:机理、表征和阴极再生应用
Li-Fe 反位点缺陷作为 LiFePO4 晶体结构的固有缺陷,在合成和电池循环过程中不可避免地被引入。传统上,它被视为锂离子扩散的障碍,但事实证明 Li-Fe 反位点缺陷可以通过新的扩散通道增强各向异性扩散并优化能量存储,这与与拉伸应力特性的协同效应有关。然而,Li-Fe 反位缺陷和电化学性能之间的详细机制仍然很复杂,可能涉及其他性质,例如磁性能。一系列有效的表征技术,包括 FITR、XRD Rietveld 细化和 STEM,提供了多种方法来分析这些缺陷,每种方法都有其独特的优点。调整 Li-Fe 反位点缺陷的浓度对于改善 LiFePO4 的电化学性能至关重要,离子掺杂、合成控制和结构工程等策略至关重要。这些见解对于 LiFePO4 的商业生产和回收很有价值。尽管取得了进展,但 Li-Fe 反位点缺陷对储能的影响仍然存在争议,这凸显了进一步研究它们与材料特性关系的必要性。通过控制 Li-Fe 反位点缺陷来优化合成和回收过程有望实现更高效和可持续的储能系统建设。