Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Efficient regulation of surface hydroxyl groups on a Pt/Na/AC catalyst using two-step nonthermal plasma for high formaldehyde oxidation performance
Nanoscale ( IF 5.8 ) Pub Date : 2024-12-06 , DOI: 10.1039/d4nr03108c Liping Lian, Hui Xu, Ruchen Shu, Yujie Tan, Nan Wang, Jinzhu Ma, Feng Qin, Danyan Cen, Jianyuan Hou, Renxi Zhang
Nanoscale ( IF 5.8 ) Pub Date : 2024-12-06 , DOI: 10.1039/d4nr03108c Liping Lian, Hui Xu, Ruchen Shu, Yujie Tan, Nan Wang, Jinzhu Ma, Feng Qin, Danyan Cen, Jianyuan Hou, Renxi Zhang
A novel catalyst was fabricated using a two-step nonthermal plasma method by regulating surface hydroxyl groups on Na/activated carbon (AC) with 0.1 wt% Pt loading (Pt/Na/AC (P&P)) and achieved high formaldehyde (HCHO) oxidation performance at ambient temperature. Based on characterization results, we found that in the first step of nonthermal plasma treatment under argon–water, the proportion of terminal OH groups (ter-OH groups) evidently increased. Following the introduction of Na and Pt, the relative abundance of doubly bridged OH groups connecting C and Na (briNa–C-OH groups) and Pt2+ species also increased in the second step of nonthermal plasma reduction under argon, resulting in enhanced HCHO catalytic oxidation capability through a rapid reaction pathway ([HCOO−] + [OH]a → CO2 + H2O). Compared with the catalyst prepared via nitric acid oxidation and thermal deposition (Pt/Na/AC (H&T)), more Pt–Ox–Na species and surface OH groups were obtained on the Pt/Na/AC (P&P) catalyst, which not only reduced Pt consumption but also improved HCHO catalytic activity with around 100% conversion of HCHO to CO2 at 25 °C, while the Pt/Na/AC (H&T) catalyst only achieved 70% conversion. This work thus provides a new strategy for HCHO oxidation at room temperature and a novel perspective on the environmentally friendly synthesis of effective noble catalysts.
中文翻译:
使用两步非热等离子体高效调节 Pt/Na/AC 催化剂上的表面羟基,以实现高甲醛氧化性能
采用两步非热等离子体法制备了一种新型催化剂,通过调节 0.1 wt% Pt 负载量 (Pt/Na/AC (P&P)) 的 Na/活性炭 (AC) 上的表面羟基,并在环境温度下实现了高甲醛 (HCHO) 氧化性能。根据表征结果,我们发现在氩-水下非热等离子体处理的第一步中,末端 OH 基团 (ter-OH 基团) 的比例明显增加。引入 Na 和 Pt 后,在氩气下非热等离子体还原的第二步中,连接 C 和 Na 的双桥 OH 基团(briNa-C-OH 基团)和 Pt2+ 物质的相对丰度也有所增加,从而通过快速反应途径增强 HCHO 催化氧化能力([HCOO−] + [OH]a → CO2 + H2O) 的与硝酸氧化热沉积法 (Pt/Na/AC (H&T)) 制备的催化剂相比,在 Pt/Na/AC (P&P) 催化剂上获得了更多的 Pt-Ox-Na 种类和表面 OH 基团,不仅降低了 Pt 消耗,而且提高了 HCHO 催化活性,HCHO 转化为 CO2 的转化率约为 100%在 25 °C 时,而 Pt/Na/AC (H&T) 催化剂仅实现了 70% 的转化率。因此,这项工作为室温下 HCHO 氧化提供了一种新策略,并为环保合成有效的惰性催化剂提供了新的视角。
更新日期:2024-12-06
中文翻译:
使用两步非热等离子体高效调节 Pt/Na/AC 催化剂上的表面羟基,以实现高甲醛氧化性能
采用两步非热等离子体法制备了一种新型催化剂,通过调节 0.1 wt% Pt 负载量 (Pt/Na/AC (P&P)) 的 Na/活性炭 (AC) 上的表面羟基,并在环境温度下实现了高甲醛 (HCHO) 氧化性能。根据表征结果,我们发现在氩-水下非热等离子体处理的第一步中,末端 OH 基团 (ter-OH 基团) 的比例明显增加。引入 Na 和 Pt 后,在氩气下非热等离子体还原的第二步中,连接 C 和 Na 的双桥 OH 基团(briNa-C-OH 基团)和 Pt2+ 物质的相对丰度也有所增加,从而通过快速反应途径增强 HCHO 催化氧化能力([HCOO−] + [OH]a → CO2 + H2O) 的与硝酸氧化热沉积法 (Pt/Na/AC (H&T)) 制备的催化剂相比,在 Pt/Na/AC (P&P) 催化剂上获得了更多的 Pt-Ox-Na 种类和表面 OH 基团,不仅降低了 Pt 消耗,而且提高了 HCHO 催化活性,HCHO 转化为 CO2 的转化率约为 100%在 25 °C 时,而 Pt/Na/AC (H&T) 催化剂仅实现了 70% 的转化率。因此,这项工作为室温下 HCHO 氧化提供了一种新策略,并为环保合成有效的惰性催化剂提供了新的视角。