当前位置:
X-MOL 学术
›
J. Materiomics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Flexible ZrO2/ZrB2/C nanofiber felt with enhanced microwave absorption and ultralow thermal conductivity
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-12-06 , DOI: 10.1016/j.jmat.2024.100988 Chengwan Yang, Kewei Li, Mengen Hu, Xinyang Li, Ming Li, Xiaoye Hu, Yue Li, Zhulin Huang, Guowen Meng
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-12-06 , DOI: 10.1016/j.jmat.2024.100988 Chengwan Yang, Kewei Li, Mengen Hu, Xinyang Li, Ming Li, Xiaoye Hu, Yue Li, Zhulin Huang, Guowen Meng
Carbon-based materials, renowned for their low density, adjustable electrical conductivity, superior corrosion resistance and mechanical properties, and have found extensive applications in the field of electromagnetic wave absorption (EMWA). Despite their merits, the current EMWA and thermal insulation capabilities are not fully optimized, thereby restricting their applications in the aerospace sector. Herein, we introduce a combinatory methodology employing electrospinning followed by pyrolysis to in-situ integrate ZrO2 and ZrB2 nanoparticles onto the surface of carbon nanofibers, culminating in a flexible ZrO2/ZrB2/C nanofiber felt. The integration of ZrO2 and ZrB2 nanoparticles significantly augments impedance matching and promotes multifaceted scattering and interfacial polarization. Consequently, the ZrO2/ZrB2/C nanofiber felt demonstrates a minimum reflection loss (RLmin) of –54 dB and the effective absorption bandwidth (EAB, RL≤–10 dB) is 3.1 GHz. Moreover, the three-dimensional porous architecture and the presence of multiple heterogeneous interfaces endow the ZrO2/ZrB2/C nanofiber felt with an ultralow thermal conductivity of 0.016 W⸱m−1⸱K−1 at 1100 °C, underscoring its exceptional potential for infrared stealth. This work shows considerable guiding significance for the design of bi-functional EMWA materials with ultralow thermal conductivity in aerospace field.
中文翻译:
柔性 ZrO2/ZrB2/C 纳米纤维毡,具有增强的微波吸收和超低的导热性
碳基材料以其低密度、可调节的导电性、卓越的耐腐蚀性和机械性能而闻名,并在电磁波吸收 (EMWA) 领域得到了广泛的应用。尽管有优点,但目前的 EMWA 和隔热能力并未得到充分优化,从而限制了它们在航空航天领域的应用。在此,我们介绍了一种组合方法,采用静电纺丝,然后热解,将 ZrO2 和 ZrB2 纳米颗粒原位整合到碳纳米纤维的表面上,最终得到柔性 ZrO2/ZrB2/C 纳米纤维毡。ZrO2 和 ZrB2 纳米颗粒的整合显著增强了阻抗匹配,并促进了多方面散射和界面极化。因此,ZrO2/ZrB2/C 纳米纤维毡的最小反射损耗 (RLmin) 为 –54 dB,有效吸收带宽 (EAB, RL≤–10 dB) 为 3.1 GHz。此外,三维多孔结构和多个异质界面的存在使 ZrO2/ZrB2/C 纳米纤维毡在 1100 °C 时具有 0.016 W⸱m-1⸱K-1 的超低导热率,突显了其红外隐身的非凡潜力。这项工作对航空航天领域超低导热率的双功能 EMWA 材料的设计具有相当大的指导意义。
更新日期:2024-12-06
中文翻译:
柔性 ZrO2/ZrB2/C 纳米纤维毡,具有增强的微波吸收和超低的导热性
碳基材料以其低密度、可调节的导电性、卓越的耐腐蚀性和机械性能而闻名,并在电磁波吸收 (EMWA) 领域得到了广泛的应用。尽管有优点,但目前的 EMWA 和隔热能力并未得到充分优化,从而限制了它们在航空航天领域的应用。在此,我们介绍了一种组合方法,采用静电纺丝,然后热解,将 ZrO2 和 ZrB2 纳米颗粒原位整合到碳纳米纤维的表面上,最终得到柔性 ZrO2/ZrB2/C 纳米纤维毡。ZrO2 和 ZrB2 纳米颗粒的整合显著增强了阻抗匹配,并促进了多方面散射和界面极化。因此,ZrO2/ZrB2/C 纳米纤维毡的最小反射损耗 (RLmin) 为 –54 dB,有效吸收带宽 (EAB, RL≤–10 dB) 为 3.1 GHz。此外,三维多孔结构和多个异质界面的存在使 ZrO2/ZrB2/C 纳米纤维毡在 1100 °C 时具有 0.016 W⸱m-1⸱K-1 的超低导热率,突显了其红外隐身的非凡潜力。这项工作对航空航天领域超低导热率的双功能 EMWA 材料的设计具有相当大的指导意义。