当前位置:
X-MOL 学术
›
Org. Process Res. Dev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Evaluating Resonant Acoustic Mixing as a Wet Granulation Process
Organic Process Research & Development ( IF 3.1 ) Pub Date : 2024-12-06 , DOI: 10.1021/acs.oprd.4c00347 Matthew Frederick Lopez Villena, Zachary Dean Doorenbos, Kyle Thomas Sullivan, Blair Brettmann
Organic Process Research & Development ( IF 3.1 ) Pub Date : 2024-12-06 , DOI: 10.1021/acs.oprd.4c00347 Matthew Frederick Lopez Villena, Zachary Dean Doorenbos, Kyle Thomas Sullivan, Blair Brettmann
Control of powder properties is crucial for industrial processes across the food, pharmaceutical, agriculture, and mineral processing industries, and granulation is an important tool for providing agglomerated particles with controllable properties. However, existing granulation processes are not readily integrated with other processing steps and are not appropriate for some types of materials. Adding resonant acoustic-based granulation to the toolkit has the potential to widen the achievable parameter space and, importantly, integrate granulation into chemistry and blending operations that are already being performed on the RAM platform, resulting in process intensification. Here, we demonstrate the formation of granules with particle sizes of ca. 1–3 mm in LabRAM II and examine the formation mechanisms in the context of common wet granulation processes. The RAM granulation process followed here involves first forming a large “doughball” agglomerate and then driving its breakup by evaporating the solvent, while impacting the doughball against the container walls. We show that this process is similar to the destructive nucleation model for high-shear wet granulation with the solvent evaporation in our case leading to the decrease in the liquid saturation of the doughball, a corresponding decrease in its tensile strength, and the acceleration in the RAM establishing the impact pressure when the doughball contacts the walls. This work provides a foundation for granulation process design with a resonant acoustic mixer and, through its link to existing granulation mechanisms, provides a path to a deeper understanding of the process.
中文翻译:
评估共振声混合作为湿法造粒工艺
粉末特性的控制对于食品、制药、农业和矿物加工行业的工业过程至关重要,而造粒是提供具有可控特性的团聚颗粒的重要工具。然而,现有的造粒工艺不容易与其他加工步骤集成,并且不适用于某些类型的材料。将基于共振声学的造粒添加到工具包中有可能拓宽可实现的参数空间,重要的是,将造粒集成到已经在 RAM 平台上执行的化学和混合操作中,从而实现工艺强化。在这里,我们演示了在 LabRAM II 中形成粒径约为 1-3 mm 的颗粒,并研究了常见湿法制粒工艺背景下的形成机制。这里遵循的 RAM 造粒过程包括首先形成一个大的“面团球”团聚物,然后通过蒸发溶剂来驱动其分解,同时将面团球撞击容器壁。我们表明,这个过程类似于高剪切湿法制粒的破坏性成核模型,在我们的例子中,溶剂蒸发导致面团球的液体饱和度降低,其拉伸强度相应降低,并且 RAM 中的加速在面团球接触壁时建立冲击压力。这项工作为使用共振声学混合器进行造粒工艺设计奠定了基础,并通过它与现有造粒机制的联系,为更深入地了解该工艺提供了一条途径。
更新日期:2024-12-06
中文翻译:
评估共振声混合作为湿法造粒工艺
粉末特性的控制对于食品、制药、农业和矿物加工行业的工业过程至关重要,而造粒是提供具有可控特性的团聚颗粒的重要工具。然而,现有的造粒工艺不容易与其他加工步骤集成,并且不适用于某些类型的材料。将基于共振声学的造粒添加到工具包中有可能拓宽可实现的参数空间,重要的是,将造粒集成到已经在 RAM 平台上执行的化学和混合操作中,从而实现工艺强化。在这里,我们演示了在 LabRAM II 中形成粒径约为 1-3 mm 的颗粒,并研究了常见湿法制粒工艺背景下的形成机制。这里遵循的 RAM 造粒过程包括首先形成一个大的“面团球”团聚物,然后通过蒸发溶剂来驱动其分解,同时将面团球撞击容器壁。我们表明,这个过程类似于高剪切湿法制粒的破坏性成核模型,在我们的例子中,溶剂蒸发导致面团球的液体饱和度降低,其拉伸强度相应降低,并且 RAM 中的加速在面团球接触壁时建立冲击压力。这项工作为使用共振声学混合器进行造粒工艺设计奠定了基础,并通过它与现有造粒机制的联系,为更深入地了解该工艺提供了一条途径。