当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Conductive TiN network-assisted fast-charging of lithium-ion batteries
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-12-05 , DOI: 10.1039/d4ta06987k Won Ung Jeong, Hong Rim Shin, Ilyoung Choi, Jae Seok Jeong, Joo Hyeong Suh, Dong Ki Kim, Youngugk Kim, Jong-Won Lee, Min-Sik Park
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-12-05 , DOI: 10.1039/d4ta06987k Won Ung Jeong, Hong Rim Shin, Ilyoung Choi, Jae Seok Jeong, Joo Hyeong Suh, Dong Ki Kim, Youngugk Kim, Jong-Won Lee, Min-Sik Park
To reduce the charging time of lithium-ion batteries, we propose a surface-engineering technique for improving the sluggish interfacial reactions of commercial graphite anodes. Titanium nitride (TiN) nanoparticles are integrated onto graphite particles as a functional promoter by using an Mg-assisted nitriding process combined with a molten salt method. Unlike conventional nitriding processes, this synthesis method ensures enhanced safety and efficiency because it does not require the use of ammonia gas. Moreover, the molten-salt method facilitates a uniform and scalable production process. The TiN nanoparticles effectively reduce the interfacial resistance on the graphite surface due to its low Li+ adsorption energy (−2.0 eV) and provide excellent electrical conductivity (∼106 S cm−1) during cycling. Furthermore, the partial conversion of TiN nanoparticles leads to the formation of highly conductive Li3N–TiN clusters, which effectively modify the physicochemical properties of the graphite surface to enhance Li+ conduction. Notably, a full-cell configured with a TiN-coated graphite anode exhibits fast-charging performance, reaching 80% of the state of charge within just 16 min. It also maintains a stable cycling performance over 300 cycles under fast-charging conditions (i.e., 3C charging and 1C discharging). The full cell retains a high reversible capacity (93.5%) after 300 cycles, with no evidence of undesirable Li plating on the graphite surface.
中文翻译:
导电 TiN 网络辅助锂离子电池快速充电
为了减少锂离子电池的充电时间,我们提出了一种表面工程技术来改善商用石墨阳极的缓慢界面反应。氮化钛 (TiN) 纳米颗粒通过使用 Mg 辅助氮化工艺结合熔盐法作为功能促进剂整合到石墨颗粒上。与传统的渗氮工艺不同,这种合成方法不需要使用氨气,因此确保了更高的安全性和效率。此外,熔盐法有助于实现统一且可扩展的生产过程。TiN 纳米颗粒由于其低 Li+ 吸附能 (-2.0 eV) 而有效降低了石墨表面的界面电阻,并在循环过程中提供出色的导电性 (∼106 S cm-1)。此外,TiN 纳米颗粒的部分转化导致形成高导电性的 Li3N-TiN 团簇,有效地改变了石墨表面的物理化学性质,增强了 Li+ 导电性。值得注意的是,配置了 TiN 涂层石墨阳极的全电池表现出快速充电性能,可在短短 16 分钟内达到 80% 的充电状态。它还在快速充电条件下(即 3C 充电和 1C 放电)保持稳定的循环性能超过 300 次。整个电池在 300 次循环后仍保持高可逆容量 (93.5%),石墨表面没有不良锂镀层的迹象。
更新日期:2024-12-10
中文翻译:
导电 TiN 网络辅助锂离子电池快速充电
为了减少锂离子电池的充电时间,我们提出了一种表面工程技术来改善商用石墨阳极的缓慢界面反应。氮化钛 (TiN) 纳米颗粒通过使用 Mg 辅助氮化工艺结合熔盐法作为功能促进剂整合到石墨颗粒上。与传统的渗氮工艺不同,这种合成方法不需要使用氨气,因此确保了更高的安全性和效率。此外,熔盐法有助于实现统一且可扩展的生产过程。TiN 纳米颗粒由于其低 Li+ 吸附能 (-2.0 eV) 而有效降低了石墨表面的界面电阻,并在循环过程中提供出色的导电性 (∼106 S cm-1)。此外,TiN 纳米颗粒的部分转化导致形成高导电性的 Li3N-TiN 团簇,有效地改变了石墨表面的物理化学性质,增强了 Li+ 导电性。值得注意的是,配置了 TiN 涂层石墨阳极的全电池表现出快速充电性能,可在短短 16 分钟内达到 80% 的充电状态。它还在快速充电条件下(即 3C 充电和 1C 放电)保持稳定的循环性能超过 300 次。整个电池在 300 次循环后仍保持高可逆容量 (93.5%),石墨表面没有不良锂镀层的迹象。