当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boosting oxygen redox reversibility in chemo-mechanically robust Li-rich oxide cathodes via multi-scale defect design
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-05 , DOI: 10.1039/d4ee04266b Fangkun Li, Yenchen Lin, Junhao Liu, Jiahe Chen, Xuanhong Wan, Linwei Zhao, Lei Xi, Zheng Li, Hangyu Zhang, Xijun Xu, Zhidu Zhou, Baitao Su, Min Zhu, Jun Liu
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-05 , DOI: 10.1039/d4ee04266b Fangkun Li, Yenchen Lin, Junhao Liu, Jiahe Chen, Xuanhong Wan, Linwei Zhao, Lei Xi, Zheng Li, Hangyu Zhang, Xijun Xu, Zhidu Zhou, Baitao Su, Min Zhu, Jun Liu
Li-rich oxide (LRO) cathodes can deliver high-energy density based on the synergistic effect of cation and anion redox. However, continued accumulation of lattice strain and irreversible oxygen-anion redox reactions generate severe mechanical failure and rapid voltage decay in lithium-ion batteries (LIBs). Herein, we constructed a layered-spinel lattice-matched epitaxial structure with delocalized Li@Mn6 superstructural units to intercept lattice strain-induced structural evolution and facilitate oxygen redox reversibility. This multiscale regulation strategy was realized by tailoring the excess-Li distribution, which enhances the cathode electrolyte interfacial (CEI) stability and prevents the rapid performance decay of LROs. The modified LROs achieved significant improvements, including uniform current distribution, minimal lattice strain change (0.00179), impressive initial coulombic efficiency (87.1%), exceptional thermal stability and enhanced cycling stability. Specifically, the capacity retention of the pristine LROs increased from 47.6% to 90.8% after 400 cycles. These results highlight the outstanding electro-chemo-mechanical stability of the modified LROs. Therefore, this multiscale defect-regulated strategy could help to solve the structural collapse and electrochemical decay caused by irreversible anionic redox in practical application of LROs.
中文翻译:
通过多尺度缺陷设计提高化学机械稳健的富锂氧化物阴极中的氧氧化还原可逆性
富锂氧化物 (LRO) 阴极可以基于阳离子和阴离子氧化还原的协同效应提供高能量密度。然而,晶格应变的持续积累和不可逆的氧阴离子氧化还原反应会在锂离子电池 (LIB) 中产生严重的机械故障和快速电压衰减。在此,我们构建了一个层状尖晶石晶格匹配外延结构,具有离域Li@Mn6 个上层结构单元,以拦截晶格应变诱导的结构演变并促进氧氧化还原可逆性。这种多尺度调节策略是通过定制过量 Li 分布来实现的,这增强了阴极电解质界面 (CEI) 的稳定性并防止 LRO 的性能快速衰减。改性的 LRO 实现了显着改进,包括均匀的电流分布、最小的晶格应变变化 (0.00179)、令人印象深刻的初始库仑效率 (87.1%)、出色的热稳定性和增强的循环稳定性。具体来说,原始 LRO 的容量保留率在 400 次循环后从 47.6% 增加到 90.8%。这些结果突出了改性 LRO 出色的电化学机械稳定性。因此,这种多尺度缺陷调控策略有助于解决 LROs 实际应用中不可逆阴离子氧化还原引起的结构崩溃和电化学衰变。
更新日期:2024-12-05
中文翻译:
通过多尺度缺陷设计提高化学机械稳健的富锂氧化物阴极中的氧氧化还原可逆性
富锂氧化物 (LRO) 阴极可以基于阳离子和阴离子氧化还原的协同效应提供高能量密度。然而,晶格应变的持续积累和不可逆的氧阴离子氧化还原反应会在锂离子电池 (LIB) 中产生严重的机械故障和快速电压衰减。在此,我们构建了一个层状尖晶石晶格匹配外延结构,具有离域Li@Mn6 个上层结构单元,以拦截晶格应变诱导的结构演变并促进氧氧化还原可逆性。这种多尺度调节策略是通过定制过量 Li 分布来实现的,这增强了阴极电解质界面 (CEI) 的稳定性并防止 LRO 的性能快速衰减。改性的 LRO 实现了显着改进,包括均匀的电流分布、最小的晶格应变变化 (0.00179)、令人印象深刻的初始库仑效率 (87.1%)、出色的热稳定性和增强的循环稳定性。具体来说,原始 LRO 的容量保留率在 400 次循环后从 47.6% 增加到 90.8%。这些结果突出了改性 LRO 出色的电化学机械稳定性。因此,这种多尺度缺陷调控策略有助于解决 LROs 实际应用中不可逆阴离子氧化还原引起的结构崩溃和电化学衰变。