当前位置:
X-MOL 学术
›
J. Geophys. Res. Solid Earth
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Possibility of Fluid Flow Characterization via a Geophysical Signal: Experimental Study on the Krauklis Wave Under Fluid Flow
Journal of Geophysical Research: Solid Earth ( IF 3.9 ) Pub Date : 2024-12-05 , DOI: 10.1029/2024jb029229 Sananda Ray, Haitao Cao, Gregory P. Waite, Roohollah Askari
Journal of Geophysical Research: Solid Earth ( IF 3.9 ) Pub Date : 2024-12-05 , DOI: 10.1029/2024jb029229 Sananda Ray, Haitao Cao, Gregory P. Waite, Roohollah Askari
Krauklis waves are generated by pressure disturbances in fluid-filled cavities and travel along the solid-fluid interface. Their far-field radiation, observed in seismic data from volcanoes or hydraulic fracturing, is known as long-period events. Characterized by low velocity and resonance, Krauklis waves help estimate fracture size and discern fluids in saturated fractures. Despite numerous theoretical models analyzing Krauklis waves, the existing paradigms are founded on static flow conditions. However, in geological contexts, the assumption of static flow may not be valid. We developed an experimental apparatus using a tri-layer model consisting of a pair of aluminum plates to examine the effect of fluid flow on Krauklis waves. We employed an infusion syringe pump to inject fluids into the fracture under different flow rates. We used water, oil, and an aqueous solution of Polyethylene glycol as fracture fluids. We calculated resonant frequency, phase velocity, and quality factor to characterize the Krauklis waves. Our findings reveal that an increase in flow rate leads to a higher phase velocity, higher quality factor, and a shift to higher resonant frequency when the flow is in the direction of initial wave propagation while decreasing amplitude. Additionally, when the flow is in the opposite direction of initial wave propagation, we note higher wave absorption and distortion of the Krauklis waves. Our observations unequivocally affirm that fluid flow leaves strong signatures on the Krauklis waves, providing a robust basis for characterizing fluid dynamics within geological settings through the analysis of Krauklis wave.
中文翻译:
通过地球物理信号表征流体流动的可能性:流体流动下 Krauklis 波的实验研究
Krauklis 波是由充满流体的空腔中的压力扰动产生的,并沿着固液界面传播。在火山或水力压裂的地震数据中观察到的远场辐射被称为长周期事件。Krauklis 波的特点是低速度和共振,有助于估计裂缝大小并识别饱和裂缝中的液体。尽管有许多理论模型分析 Krauklis 波,但现有的范式是建立在静态流动条件之上的。然而,在地质环境中,静态流动的假设可能无效。我们开发了一种实验装置,使用由一对铝板组成的三层模型来检查流体流动对 Krauklis 波的影响。我们采用输液注射泵以不同的流速将液体注入裂缝。我们使用水、油和聚乙二醇水溶液作为压裂液。我们计算了谐振频率、相位速度和品质因数来表征 Krauklis 波。我们的研究结果表明,当流动沿初始波传播方向同时减小振幅时,流速的增加会导致更高的相速度、更高的品质因数和更高的谐振频率。此外,当流动与初始波传播方向相反时,我们注意到更高的波吸收和 Krauklis 波的失真。我们的观察结果明确证实,流体流动在 Krauklis 波上留下了强烈的特征,为通过分析 Krauklis 波来表征地质环境中的流体动力学提供了坚实的基础。
更新日期:2024-12-05
中文翻译:
通过地球物理信号表征流体流动的可能性:流体流动下 Krauklis 波的实验研究
Krauklis 波是由充满流体的空腔中的压力扰动产生的,并沿着固液界面传播。在火山或水力压裂的地震数据中观察到的远场辐射被称为长周期事件。Krauklis 波的特点是低速度和共振,有助于估计裂缝大小并识别饱和裂缝中的液体。尽管有许多理论模型分析 Krauklis 波,但现有的范式是建立在静态流动条件之上的。然而,在地质环境中,静态流动的假设可能无效。我们开发了一种实验装置,使用由一对铝板组成的三层模型来检查流体流动对 Krauklis 波的影响。我们采用输液注射泵以不同的流速将液体注入裂缝。我们使用水、油和聚乙二醇水溶液作为压裂液。我们计算了谐振频率、相位速度和品质因数来表征 Krauklis 波。我们的研究结果表明,当流动沿初始波传播方向同时减小振幅时,流速的增加会导致更高的相速度、更高的品质因数和更高的谐振频率。此外,当流动与初始波传播方向相反时,我们注意到更高的波吸收和 Krauklis 波的失真。我们的观察结果明确证实,流体流动在 Krauklis 波上留下了强烈的特征,为通过分析 Krauklis 波来表征地质环境中的流体动力学提供了坚实的基础。