Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Flow cell for high throughput Raman spectroscopy of non-transparent solutions.
Lab on a Chip ( IF 6.1 ) Pub Date : 2024-12-17 , DOI: 10.1039/d4lc00586d Filippo Zorzi,Emil Alstrup Jensen,Murat Serhatlioglu,Silvio Bonfadini,Morten Hanefeld Dziegiel,Luigino Criante,Anders Kristensen
Lab on a Chip ( IF 6.1 ) Pub Date : 2024-12-17 , DOI: 10.1039/d4lc00586d Filippo Zorzi,Emil Alstrup Jensen,Murat Serhatlioglu,Silvio Bonfadini,Morten Hanefeld Dziegiel,Luigino Criante,Anders Kristensen
This work introduces a high-throughput setup for Raman analysis of various flowing fluids, both transparent and non-transparent. The setup employs a microfluidic cell, used with an external optical setup, to control the sample flow's position and dimensions via 3-dimensional hydrodynamic focusing. This approach, in contrast to the prevalent use of fused silica capillaries, reduces the risk of sample photodegradation and boosts measurement efficiency, enhancing overall system throughput. The microfluidic cell has been further evolved to laminate two distinct flows from different samples in parallel. Using line excitation, both samples can be simultaneously excited without moving parts, further increasing throughput. This setup also enables real-time monitoring of phenomena like mixing or potential reactions between the two fluids. This development could significantly advance the creation of highly sensitive, high-throughput sensors for fluid composition analysis.
中文翻译:
用于非透明溶液的高通量拉曼光谱的流通池。
本研究介绍了一种用于对各种流动流体(透明和非透明)进行拉曼分析的高通量设置。该装置采用微流体单元,与外部光学装置一起使用,通过 3 维流体动力学聚焦控制样品流的位置和尺寸。与普遍使用的熔融石英毛细管相比,这种方法降低了样品光降解的风险,提高了测量效率,从而提高了整体系统通量。微流体单元已进一步发展为平行层压来自不同样品的两个不同流动。使用线激发,无需移动部件即可同时激发两个样品,从而进一步提高通量。这种设置还可以实时监测两种流体之间的混合或潜在反应等现象。这一发展可以显著推动用于流体成分分析的高灵敏度、高通量传感器的创建。
更新日期:2024-12-04
中文翻译:
用于非透明溶液的高通量拉曼光谱的流通池。
本研究介绍了一种用于对各种流动流体(透明和非透明)进行拉曼分析的高通量设置。该装置采用微流体单元,与外部光学装置一起使用,通过 3 维流体动力学聚焦控制样品流的位置和尺寸。与普遍使用的熔融石英毛细管相比,这种方法降低了样品光降解的风险,提高了测量效率,从而提高了整体系统通量。微流体单元已进一步发展为平行层压来自不同样品的两个不同流动。使用线激发,无需移动部件即可同时激发两个样品,从而进一步提高通量。这种设置还可以实时监测两种流体之间的混合或潜在反应等现象。这一发展可以显著推动用于流体成分分析的高灵敏度、高通量传感器的创建。