当前位置:
X-MOL 学术
›
Eur. Heart J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Artificial intelligence-derived electrocardiographic aging and risk of atrial fibrillation: a multi-national study.
European Heart Journal ( IF 37.6 ) Pub Date : 2024-11-29 , DOI: 10.1093/eurheartj/ehae790 Seunghoon Cho,Sujeong Eom,Daehoon Kim,Tae-Hoon Kim,Jae-Sun Uhm,Hui-Nam Pak,Moon-Hyoung Lee,Pil-Sung Yang,Eunjung Lee,Zachi Itzhak Attia,Paul Andrew Friedman,Seng Chan You,Hee Tae Yu,Boyoung Joung
European Heart Journal ( IF 37.6 ) Pub Date : 2024-11-29 , DOI: 10.1093/eurheartj/ehae790 Seunghoon Cho,Sujeong Eom,Daehoon Kim,Tae-Hoon Kim,Jae-Sun Uhm,Hui-Nam Pak,Moon-Hyoung Lee,Pil-Sung Yang,Eunjung Lee,Zachi Itzhak Attia,Paul Andrew Friedman,Seng Chan You,Hee Tae Yu,Boyoung Joung
BACKGROUND AND AIMS
Artificial intelligence (AI) algorithms in 12-lead electrocardiogram (ECG) provides promising age prediction methods. This study investigated whether the discrepancy between ECG-derived AI-predicted age (AI-ECG age) and chronological age, termed electrocardiographic aging (ECG aging), is associated with atrial fibrillation (AF) risk.
METHODS
An AI-ECG age prediction model was developed using a large-scale dataset (1 533 042 ECGs from 689 639 participants) and validated with six independent and multi-national datasets (737 133 ECGs from 330 794 participants). The AI-ECG age gap was calculated across two South Korean cohorts [mean (standard deviation) follow-up: 4.1 (4.3) years for 111 483 participants and 6.1 (3.8) years for 37 517 participants], one UK cohort [3.0 (1.6) years; 40 973 participants], and one US cohort [12.9 (8.6) years; 90 639 participants]. Participants were classified into two groups: normal group (age gap < 7 years) and ECG-aged group (age gap ≥ 7 years). The predictive capability of ECG aging for new- and early-onset AF risk was assessed.
RESULTS
The mean AI-ECG ages were 51.9 (16.2), 47.4 (12.5), 68.4 (7.8), and 56.7 (14.6) years with age gaps of .0 (6.8), -.1 (6.0), 4.7 (8.7), and -1.4 (8.9) years in the two South Korean, UK, and US cohorts, respectively. In the ECG-aged group, increased risks of new-onset AF were observed with hazard ratios (95% confidence intervals) of 2.50 (2.24-2.78), 1.89 (1.46-2.43), 1.90 (1.55-2.33), and 1.76 (1.67-1.86) in the two South Korean, UK, and US cohorts, respectively. For early-onset AF, odds ratios were 2.89 (2.47-3.37), 1.94 (1.39-2.70), 1.58 (1.06-2.35), and 1.79 (1.62-1.97) in these cohorts compared with the normal group.
CONCLUSIONS
The AI-derived ECG aging was associated with the risk of new- and early-onset AF, suggesting its potential utility to identify individuals for AF prevention across diverse populations.
中文翻译:
人工智能衍生的心电图衰老和心房颤动风险:一项多国研究。
背景和目标 12 导联心电图 (ECG) 中的人工智能 (AI) 算法提供了有前途的年龄预测方法。本研究调查了心电图衍生的 AI 预测年龄 (AI-ECG 年龄) 与实际年龄之间的差异,称为心电图老化 (ECG aging),是否与心房颤动 (AF) 风险有关。方法 使用大规模数据集 (来自 689 639 名参与者的 1 533 042 个心电图) 开发了 AI-心电图年龄预测模型,并使用六个独立的多国数据集 (来自 330 794 名参与者的 737 133 个心电图) 进行了验证。计算了两个韩国队列 [平均(标准差)随访:111 483 名参与者为 4.1 (4.3) 岁,37 517 名参与者为 6.1 (3.8) 岁]、一个英国队列 [3.0 (1.6) 岁;40 973 名参与者] 和一个美国队列 [12.9 (8.6) 岁;90 639 名参与者]。参与者分为两组:正常组 (年龄差距 < 7 岁) 和 心电图年龄组 (年龄差距 ≥ 7 岁)。评估了心电图老化对新发和早发 AF 风险的预测能力。结果 平均 AI-ECG 年龄为 51.9 (16.2) 、 47.4 (12.5) 、 68.4 (7.8) 和 56.7 (14.6) 岁,年龄差距分别为 .0 (6.8) 、 -.1 (6.0)、 4.7 (8.7) 和 -1.4 (8.9) 岁在韩国、英国和美国两个队列中。在心电图年龄组中,观察到新发 AF 的风险增加,风险比 (95% 置信区间) 分别为 2.50 (2.24-2.78)、1.89 (1.46-2.43)、1.90 (1.55-2.33) 和 1.76 (1.67-1.86) 在韩国、英国和美国两个队列中,。对于早发性 AF,与正常组相比,这些队列中的比值比为 2.89 (2.47-3.37)、1.94 (1.39-2.70)、1.58 (1.06-2.35) 和 1.79 (1.62-1.97)。 结论 AI 衍生的心电图衰老与新发和早发 AF 的风险相关,表明其在识别不同人群中预防 AF 的个体具有潜在效用。
更新日期:2024-11-29
中文翻译:
人工智能衍生的心电图衰老和心房颤动风险:一项多国研究。
背景和目标 12 导联心电图 (ECG) 中的人工智能 (AI) 算法提供了有前途的年龄预测方法。本研究调查了心电图衍生的 AI 预测年龄 (AI-ECG 年龄) 与实际年龄之间的差异,称为心电图老化 (ECG aging),是否与心房颤动 (AF) 风险有关。方法 使用大规模数据集 (来自 689 639 名参与者的 1 533 042 个心电图) 开发了 AI-心电图年龄预测模型,并使用六个独立的多国数据集 (来自 330 794 名参与者的 737 133 个心电图) 进行了验证。计算了两个韩国队列 [平均(标准差)随访:111 483 名参与者为 4.1 (4.3) 岁,37 517 名参与者为 6.1 (3.8) 岁]、一个英国队列 [3.0 (1.6) 岁;40 973 名参与者] 和一个美国队列 [12.9 (8.6) 岁;90 639 名参与者]。参与者分为两组:正常组 (年龄差距 < 7 岁) 和 心电图年龄组 (年龄差距 ≥ 7 岁)。评估了心电图老化对新发和早发 AF 风险的预测能力。结果 平均 AI-ECG 年龄为 51.9 (16.2) 、 47.4 (12.5) 、 68.4 (7.8) 和 56.7 (14.6) 岁,年龄差距分别为 .0 (6.8) 、 -.1 (6.0)、 4.7 (8.7) 和 -1.4 (8.9) 岁在韩国、英国和美国两个队列中。在心电图年龄组中,观察到新发 AF 的风险增加,风险比 (95% 置信区间) 分别为 2.50 (2.24-2.78)、1.89 (1.46-2.43)、1.90 (1.55-2.33) 和 1.76 (1.67-1.86) 在韩国、英国和美国两个队列中,。对于早发性 AF,与正常组相比,这些队列中的比值比为 2.89 (2.47-3.37)、1.94 (1.39-2.70)、1.58 (1.06-2.35) 和 1.79 (1.62-1.97)。 结论 AI 衍生的心电图衰老与新发和早发 AF 的风险相关,表明其在识别不同人群中预防 AF 的个体具有潜在效用。