当前位置: X-MOL 学术J. Chem. Inf. Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of Recyclable Plastics with Machine Learning and Genetic Algorithm.
Journal of Chemical Information and Modeling ( IF 5.6 ) Pub Date : 2024-12-03 , DOI: 10.1021/acs.jcim.4c01530
Chureh Atasi,Joseph Kern,Rampi Ramprasad

We present an artificial intelligence-guided approach to design durable and chemically recyclable ring-opening polymerization (ROP) class polymers. This approach employs a genetic algorithm (GA) that designs new monomers and then utilizes virtual forward synthesis (VFS) to generate almost a million ROP polymers. Machine learning models to predict thermal, thermodynamic, and mechanical properties─crucial for application-specific performance and recyclability─are used to guide the GA toward optimal polymers. We present potential substitute polymers for polystyrene (PS) that achieve all property targets with low estimated synthetic complexity.

中文翻译:


使用机器学习和遗传算法设计可回收塑料。



我们提出了一种人工智能指导的方法,用于设计耐用且可化学回收的开环聚合 (ROP) 类聚合物。这种方法采用遗传算法 (GA) 设计新的单体,然后利用虚拟正向合成 (VFS) 生成近 100 万种 ROP 聚合物。用于预测热、热力学和机械性能的机器学习模型(对于特定应用的性能和可回收性至关重要)用于指导 GA 实现最佳聚合物。我们提出了聚苯乙烯 (PS) 的潜在替代聚合物,这些聚合物可以实现所有性能目标,并且估计合成复杂性较低。
更新日期:2024-12-03
down
wechat
bug