当前位置: X-MOL 学术J. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transcription Factor-Wide Association Studies (TF-WAS) to Identify Functional SNPs in Alzheimer's Disease.
Journal of Neuroscience ( IF 4.4 ) Pub Date : 2024-12-02 , DOI: 10.1523/jneurosci.1800-24.2024
Jessica Dunn,Cedric Moore,Nam-Shik Kim,Tianshun Gao,Zhiqiang Cheng,Peng Jin,Guo-Li Ming,Jiang Qian,Yijing Su,Hongjun Song,Heng Zhu

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with profound global impact. While Genome-wide Association Studies (GWAS) have revealed genomic variants linked to AD, their translational impact has been limited due to challenges in interpreting the identified genetic associations. To address this challenge, we have devised a novel approach termed Transcription Factor-Wide Association Studies (TF-WAS). By integrating the GWAS, eQTL and transcriptome analyses, we selected 30 AD SNPs in non-coding regions that are likely to be functional. Using human transcription factor (TF) microarrays, we have identified 90 allele-specific TF interactions with 53 unique TFs. We then focused on several interactions involving SMAD4, and further validated them using EMSA, luciferase, and ChIP on engineered genetic backgrounds (female cells). This approach holds promise for unraveling the intricacies of not just AD, but any complex disease with available GWAS data, providing insight into underlying molecular mechanisms and clues towards potential therapeutic targets.Signficance statement We introduce a powerful platform for better understanding the genetic contribution of Alzheimer's Disease (AD) and other complex diseases. Through Genome-Wide Association Studies (GWAS), many statistically significant Single Nucleotide Polymorphisms (SNPs) associated with AD have been identified, but their functionality remains unknown. By screening >85% of human proteome transcription factors and cofactors for allele-specific binding preferences with GWAS SNPs, we can comprehensively elucidate the functionality of these SNPs in disease etiology. Using this strategy, we have identified and validated several allele-specific interactions with AD-associated GWAS SNPs that have potential implications in processes relevant to AD. By leveraging available GWAS data, we can identify functional SNPs not just in AD, but in essentially all other complex diseases.

中文翻译:


全转录因子关联研究 (TF-WAS) 鉴定阿尔茨海默病中的功能性 SNP。



阿尔茨海默病 (AD) 是一种进行性神经退行性疾病,具有深远的全球影响。虽然全基因组关联研究 (GWAS) 揭示了与 AD 相关的基因组变异,但由于在解释已识别的遗传关联方面存在挑战,因此其转化影响受到限制。为了应对这一挑战,我们设计了一种称为转录因子范围关联研究 (TF-WAS) 的新方法。通过整合 GWAS 、 eQTL 和转录组分析,我们在非编码区选择了 30 个 AD SNP,这些 SNP 可能具有功能。使用人类转录因子 (TF) 微阵列,我们已经确定了 90 个等位基因特异性 TF 相互作用与 53 个独特的 TF。然后,我们专注于涉及 SMAD4 的几种相互作用,并使用 EMSA、荧光素酶和 ChIP 在工程遗传背景(女性细胞)上进一步验证它们。这种方法不仅有望解开 AD 的复杂性,而且有望通过可用的 GWAS 数据解开任何复杂疾病的复杂性,从而深入了解潜在的分子机制和潜在治疗靶点的线索。重要声明 我们引入了一个强大的平台,以更好地了解阿尔茨海默病 (AD) 和其他复杂疾病的遗传贡献。通过全基因组关联研究 (GWAS),已经确定了许多与 AD 相关的具有统计学意义的单核苷酸多态性 (SNP),但它们的功能仍然未知。通过筛选 >85% 的人类蛋白质组转录因子和辅因子与 GWAS SNP 的等位基因特异性结合偏好,我们可以全面阐明这些 SNP 在疾病病因学中的功能。 使用这种策略,我们已经确定并验证了与 AD 相关的 GWAS SNP 的几种等位基因特异性相互作用,这些相互作用在与 AD 相关的过程中具有潜在影响。通过利用可用的 GWAS 数据,我们不仅可以识别 AD 中的功能性 SNP,而且基本上可以识别所有其他复杂疾病中的功能性 SNP。
更新日期:2024-12-02
down
wechat
bug