当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rational catalyst layer design enables tailored transport channels for efficient CO2 electrochemical reduction to multi-carbon products
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-05 , DOI: 10.1039/d4ee03743j Jiping Sun, Bichao Wu, Zhixing Wang, Huajun Guo, Guochun Yan, Hui Duan, Guangchao Li, Ying Wang, Jiexi Wang
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-05 , DOI: 10.1039/d4ee03743j Jiping Sun, Bichao Wu, Zhixing Wang, Huajun Guo, Guochun Yan, Hui Duan, Guangchao Li, Ying Wang, Jiexi Wang
Membrane electrode assemblies (MEAs) have been developed for electrochemical conversion of CO2 to high-value multi-carbon (C2+) products at industrial current densities (j > 200 mA cm−2). However, the effective and simultaneous modulation of CO2 and H2O mass transfer within MEA remains a critical issue, particularly at the three-phase interface. Herein, CO2 and H2O channels are incorporated into the catalyst layer network to benefit the micro-environment. The balance of local CO2 and H2O at the reaction interface is attained by regulating the catalyst-coated ionomer. In situ DEMS further confirms that the rational routes are successfully established for mass transfer management. The interfacial distribution of CO2 and H2O is in-depth investigated via in situ ATR-SEIRAS and molecular dynamics (MD) simulation. Through reasonable catalyst layer design, CO2-to-C2+ performance is substantially enhanced, exhibiting remarkable selectivity to C2+ products with a faradaic efficiency (FE) of 89.4 ± 0.69% and a partial current density of 536 ± 4.14 mA cm−2. The optimized Cu-GDE also exhibits excellent stability of >10 h at a total current of 2 A.
中文翻译:
合理的催化剂层设计可实现量身定制的传输通道,以实现高效的 CO2 电化学还原为多碳产品
膜电极组件 (MEA) 已被开发用于在工业电流密度 (j > 200 mA cm-2) 下将 CO2 电化学转化为高价值多碳 (C2+) 产品。然而,MEA 中 CO2 和 H2O 传质的有效和同步调制仍然是一个关键问题,尤其是在三相界面处。在此,CO2 和 H2O 通道被整合到催化剂层网络中,以有利于微环境。通过调节催化剂包被的离聚物,可以在反应界面上实现局部 CO2 和 H2O 的平衡。原位DEMS 进一步确认已成功建立合理的路由以进行质量传递管理。通过原位 ATR-SEIRAS 和分子动力学 (MD) 模拟深入研究了 CO2 和 H2O 的界面分布。通过合理的催化剂层设计,CO2 对 C2+ 性能得到显著提高,对 C2+ 产物表现出显着的选择性,法拉第效率 (FE) 为 89.4 ± 0.69%,部分电流密度为 536 ± 4.14 mA cm-2。优化的 Cu-GDE 在 2 A 的总电流下还表现出出色的 >10 h 稳定性。
更新日期:2024-12-05
中文翻译:
合理的催化剂层设计可实现量身定制的传输通道,以实现高效的 CO2 电化学还原为多碳产品
膜电极组件 (MEA) 已被开发用于在工业电流密度 (j > 200 mA cm-2) 下将 CO2 电化学转化为高价值多碳 (C2+) 产品。然而,MEA 中 CO2 和 H2O 传质的有效和同步调制仍然是一个关键问题,尤其是在三相界面处。在此,CO2 和 H2O 通道被整合到催化剂层网络中,以有利于微环境。通过调节催化剂包被的离聚物,可以在反应界面上实现局部 CO2 和 H2O 的平衡。原位DEMS 进一步确认已成功建立合理的路由以进行质量传递管理。通过原位 ATR-SEIRAS 和分子动力学 (MD) 模拟深入研究了 CO2 和 H2O 的界面分布。通过合理的催化剂层设计,CO2 对 C2+ 性能得到显著提高,对 C2+ 产物表现出显着的选择性,法拉第效率 (FE) 为 89.4 ± 0.69%,部分电流密度为 536 ± 4.14 mA cm-2。优化的 Cu-GDE 在 2 A 的总电流下还表现出出色的 >10 h 稳定性。