当前位置:
X-MOL 学术
›
Phys. Chem. Chem. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Superior conductive 1D and 2D network structured carbon-coated Ni-rich Li1.05Ni0.88Co0.08Mn0.04O2 as high-ion-diffusion cathodes for lithium-ion batteries
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-12-05 , DOI: 10.1039/d4cp03144j Sungmin Na, Junwoo Park, Hyunjin An, Seonhwa Lee, Byongyong Yu, Kwangjin Park
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-12-05 , DOI: 10.1039/d4cp03144j Sungmin Na, Junwoo Park, Hyunjin An, Seonhwa Lee, Byongyong Yu, Kwangjin Park
Numerous studies have addressed the low electrical conductivity of Li1.05Ni0.88Co0.08Mn0.04O2 (Ni-rich NCM). Among these approaches, surface treatment using multiwalled carbon nanotubes (MWCNTs) has emerged as a promising strategy for enhancing the depolarization of Ni-rich NCM and improving its electrochemical performance. However, MWCNT coatings applied by various methods often result in agglomeration and increase the ion-transfer resistance of the coating layer, leading to degraded electrochemical performance. In this study, 1D and 2D network structures are assembled on Ni-rich NCM surfaces using a MWCNT solution dispersed in ethanol solvent by an incipient method. The resulting highly conductive network structure facilitates electron movement without interfering with Li-ion transport, enhancing the depolarization of Ni-rich NCM and enabling high electrochemical performance. The 1D and 2D network structure coated Ni-rich NCM exhibits an excellent rate capability of 87.64% at 3C/0.2C and a cycle retention of 94.53% after 50 cycles at 1C/1C. Moreover, the incipient method used herein effectively maximizes the electrochemical performance with less coating weight than other methods. These findings highlight the potential of the 1D and 2D network structure coated Ni-rich NCM for advanced energy storage applications.
中文翻译:
卓越的导电一维和二维网络结构碳涂层富镍 Li1.05Ni0.88Co0.08Mn0.04O2 作为锂离子电池的高离子扩散阴极
大量研究解决了 Li1.05Ni0.88Co0.08Mn0.04O2(富镍 NCM)的低电导率问题。在这些方法中,使用多壁碳纳米管 (MWCNT) 的表面处理已成为增强富镍 NCM 去极化和改善其电化学性能的一种有前途的策略。然而,通过各种方法涂覆的 MWCNT 涂层通常会导致团聚并增加涂层的离子转移电阻,从而导致电化学性能下降。在本研究中,使用分散在乙醇溶剂中的 MWCNT 溶液通过初步方法在富镍 NCM 表面上组装 1D 和 2D 网络结构。由此产生的高导电网络结构有助于电子移动,而不会干扰锂离子传输,增强了富镍 NCM 的去极化并实现了高电化学性能。一维和二维网络结构包覆的富镍 NCM 在 3C/0.2C 下表现出 87.64% 的优异倍率能力,在 1C/1C 下循环 50 次后循环保持率为 94.53%。此外,本文使用的初期方法有效地最大限度地提高了电化学性能,而涂层重量比其他方法更轻。这些发现突出了 1D 和 2D 网络结构涂层富镍 NCM 在高级储能应用中的潜力。
更新日期:2024-12-06
中文翻译:
卓越的导电一维和二维网络结构碳涂层富镍 Li1.05Ni0.88Co0.08Mn0.04O2 作为锂离子电池的高离子扩散阴极
大量研究解决了 Li1.05Ni0.88Co0.08Mn0.04O2(富镍 NCM)的低电导率问题。在这些方法中,使用多壁碳纳米管 (MWCNT) 的表面处理已成为增强富镍 NCM 去极化和改善其电化学性能的一种有前途的策略。然而,通过各种方法涂覆的 MWCNT 涂层通常会导致团聚并增加涂层的离子转移电阻,从而导致电化学性能下降。在本研究中,使用分散在乙醇溶剂中的 MWCNT 溶液通过初步方法在富镍 NCM 表面上组装 1D 和 2D 网络结构。由此产生的高导电网络结构有助于电子移动,而不会干扰锂离子传输,增强了富镍 NCM 的去极化并实现了高电化学性能。一维和二维网络结构包覆的富镍 NCM 在 3C/0.2C 下表现出 87.64% 的优异倍率能力,在 1C/1C 下循环 50 次后循环保持率为 94.53%。此外,本文使用的初期方法有效地最大限度地提高了电化学性能,而涂层重量比其他方法更轻。这些发现突出了 1D 和 2D 网络结构涂层富镍 NCM 在高级储能应用中的潜力。