Designs, Codes and Cryptography ( IF 1.4 ) Pub Date : 2024-12-04 , DOI: 10.1007/s10623-024-01540-5 Shikang Yu, Tao Feng, Menglong Zhang
A bijection \(\theta :G\rightarrow G\) of a finite group G is an orthomorphism of G if the mapping \(x\mapsto x^{-1}\theta (x)\) is also a bijection. Two orthomorphisms \(\theta \) and \(\phi \) of a finite group G are orthogonal if the mapping \(x\mapsto \theta (x)^{-1}\phi (x)\) is also bijective. We show that there is a pair of orthogonal orthomorphisms of a finite nilpotent group G if and only if the Sylow 2-subgroup of G is either trivial or noncyclic with the definite exceptions of \(G\cong G'\) where \(G'\in \{D_8,Q_8,{\mathbb {Z}}_3,{\mathbb {Z}}_9\}\) and except possibly for \(G\cong Q_8\times {\mathbb {Z}}_9\) or \(G\cong SD_{2^n}\times {\mathbb {Z}}_3\) for any \(n\geqslant 4\). This result yields the existence of difference matrices over finite nilpotent groups with four rows.
中文翻译:
一对有限无等群的正交正交
如果映射 \(x\mapsto x^{-1}\theta (x)\) 也是双射,则有限群 G 的双射 \(\theta :G\rightarrow G\) 是 G 的正交。如果映射 \(x\mapsto \theta (x)^{-1}\phi (x)\) 也是双射的,则有限群 G 的两个正交 \(\theta \) 和 \(\phi \) 是正交的。我们表明,当且仅当 G 的 Sylow 2 子群是平凡的或非循环的,其中 \(G\cong G'\) 的明确例外是 \(G'\in \{D_8,Q_8,{\mathbb {Z}}_3,{\mathbb {Z}}_9\}\) 并且可能除了 \(G\cong Q_8\times {\mathbb {Z}}_9\) 或 \(G\cong SD_{2^n}\times {\mathbb {Z}}_3\) 之外,对于任何 \(n\geqslant 4\)。此结果得出了具有四行的有限幂等群上存在差异矩阵。