Journal of Combinatorial Optimization ( IF 0.9 ) Pub Date : 2024-12-04 , DOI: 10.1007/s10878-024-01239-2 Xiaowei Li, Peihai Liu, Xiwen Lu
The selfish bin packing with partial punishment is studied in this paper. In this problem, the utility of an item is defined as the load of the bin it is in. Each item plays the role of a selfish agent and wants to maximize its own utility. If an item with size \(s_i\) moves to another bin, it has to pay the partial punishment of \(\alpha s_{i}\), where \(0<\alpha <1\). We prove that the price of anarchy (PoA) of this game is at least 1.6424 for any \(\alpha \in (0,1)\). In particular, the PoA of this game is at least \(5/3 \approx 1.6667\) for any \(\alpha \in (\frac{2}{5},1)\). Furthermore, we obtain a new upper bound of \(h(\alpha ) \le 31/18 \approx 1.7222\) on the PoA.
中文翻译:
自私的垃圾桶包装和部分惩罚的无政府状态价格的新界限
本文研究了部分惩罚的自私垃圾桶包装。在此问题中,项的效用定义为它所在的库的负载。每个项目都扮演着自私代理人的角色,并希望最大限度地发挥自己的效用。如果大小为 \(s_i\) 的物品移动到另一个 bin,它必须支付 \(\alpha s_{i}\) 的部分惩罚,其中 \(0<\alpha <1\)。我们证明,对于任何 \(\alpha \in (0,1)\),这个游戏的无政府状态 (PoA) 的价格至少是 1.6424。特别是,对于任何 \(\alpha \in (\frac{2}{5},1)\) 来说,这个游戏的 PoA 至少是 \(5/3 \approx 1.6667\)。此外,我们在 PoA 上获得了一个新的上限 \(h(\alpha ) \le 31/18 \approx 1.7222\)。