Journal of Combinatorial Optimization ( IF 0.9 ) Pub Date : 2024-12-04 , DOI: 10.1007/s10878-024-01237-4 Mohammad R. Salavatipour, Lijiangnan Tian
In this paper, we present approximation algorithms for the Airport and Railway problem (AR) on several classes of graphs. The \(\text{ AR }\) problem, introduced as reported by Adamaszek et al. (in: Ollinger, Vollmer (eds) 33rd symposium on theoretical aspects of computer science (STACS 2016). Leibniz international proceedings in informatics (LIPIcs), Dagstuhl, 2016), is a combination of the Capacitated Facility Location problem (CFL) and the Network Design Problem (NDP). An \(\text{ AR }\) instance consists of a set of points (cities) V in a metric d(., .), each of which is associated with a non-negative cost \(f_v\) and a number k, which represent respectively the cost of establishing an airport (facility) in the corresponding point, and the universal airport capacity. A feasible solution is a network of airports and railways providing services to all cities without violating any capacity, where railways are edges connecting pairs of points, with their costs equivalent to the distance between the respective points. The objective is to find such a network with the least cost. In other words, find a forest, each component having at most k points and one open facility, minimizing the total cost of edges and airport opening costs. As reported by Adamaszek et al. (in: Ollinger, Vollmer (eds) 33rd symposium on theoretical aspects of computer science (STACS 2016). Leibniz international proceedings in informatics (LIPIcs), Dagstuhl, 2016) presented a PTAS for \(\text{ AR }\) in the two-dimensional Euclidean metric \(\mathbb {R}^2\) with a uniform opening cost. In subsequent work (as reported by Adamaszek et al. (in: Niedermeier, Vallée (eds) 35th symposium on theoretical aspects of computer science (STACS 2018). Leibniz international proceedings in informatics (LIPIcs), Dagstuhl, 2018).) presented a bicriteria \(\frac{4}{3}\left( 2+\frac{1}{\alpha }\right) \)-approximation algorithm for \(\text{ AR }\) with non-uniform opening costs but violating the airport capacity by a factor of \(1+\alpha \), i.e. \((1+\alpha )k\) capacity where \(0<\alpha \le 1\), a \(\left( 2+\frac{k}{k-1}+\varepsilon \right) \)-approximation algorithm and a bicriteria Quasi-Polynomial Time Approximation Scheme (QPTAS) for the same problem in the Euclidean plane \(\mathbb {R}^2\). In this work, we give a 2-approximation for \(\text{ AR }\) with a uniform opening cost for general metrics and an \(O(\log n)\)-approximation for non-uniform opening costs. We also give a QPTAS for \(\text{ AR }\) with a uniform opening cost in graphs of bounded treewidth and a QPTAS for a slightly relaxed version in the non-uniform setting. The latter implies O(1)-approximation on graphs of bounded doubling dimensions, graphs of bounded highway dimensions and planar graphs in quasi-polynomial time.
中文翻译:
机场和铁路问题的近似算法
在本文中,我们在几类图上提出了机场和铁路问题 (AR) 的近似算法。Adamaszek 等人报告的 \(\text{ AR }\) 问题(收录于:Ollinger, Vollmer (eds) 第 33 届计算机科学理论方面研讨会 (STACS 2016)。莱布尼茨国际信息学论文集 (LIPIcs),Dagstuhl,2016 年)是容量设施位置问题 (CFL) 和网络设计问题 (NDP) 的组合。一个 \(\text{ AR }\) 实例由度量 d(., .) 中的一组点(城市)V 组成,每个点都与一个非负成本 \(f_v\) 和一个数字 k 相关联,它们分别表示在相应点建立机场(设施)的成本和通用机场容量。一个可行的解决方案是建立一个由机场和铁路组成的网络,在不违反任何容量的情况下为所有城市提供服务,其中铁路是连接成对的点的边缘,其成本等于各个点之间的距离。目标是以最低的成本找到这样的网络。换句话说,找到一个森林,每个组件最多有 k 个点和一个开放设施点,从而最大限度地减少边的总成本和机场开放成本。正如 Adamaszek 等人所报告的那样(收录于:Ollinger, Vollmer(编辑)第 33 届计算机科学理论方面研讨会 (STACS 2016)。莱布尼茨国际信息学论文集 (LIPIcs),Dagstuhl,2016 年)提出了二维欧几里得度量 \(\mathbb {R}^2\) 中 \(\text{ AR }\) 的 PTAS,具有均匀的开盘成本。在随后的工作中(如 Adamaszek 等人报告的那样。 (收录于:Niedermeier, Vallée(编辑)第 35 届计算机科学理论方面研讨会 (STACS 2018)。莱布尼茨国际信息学论文集 (LIPIcs),Dagstuhl,2018 年)。提出了一个双标准 \(\frac{4}{3}\left( 2+\frac{1}{\alpha }\right) \) \) 近似算法,其中 \(\text{ AR }\) 的开放成本不均匀,但违反了机场容量 \(1+\alpha \) 系数 \(1+\alpha )k\),其中 \(0<\alpha \le 1\),一个 \(\left( 2+\frac{k}{k-1}+\varepsilon \right) \)-近似算法和双标准准多项式时间近似方案 (QPTAS) 在欧几里得平面 \(\mathbb {R}^2\) 中针对同一问题。在这项工作中,我们给出了 \(\text{ AR }\) 的 2 近似值,一般度量的开仓成本是均匀的,非均匀的开仓成本是 \(O(\log n)\) 的近似值。我们还给出了 \(\text{ AR }\) 的 QPTAS,在有界树宽的图中具有均匀的开端成本,并在非均匀设置中给出了略微松弛版本的 QPTAS。后者意味着有界加倍维数图、有界高速公路维数图和准多项式时间平面图上的 O(1) 近似。