Fractional Calculus and Applied Analysis ( IF 2.5 ) Pub Date : 2024-12-04 , DOI: 10.1007/s13540-024-00361-6 Eudes M. Barboza, Olímpio H. Miyagaki, Fábio R. Pereira, Cláudia R. Santana
In this paper, our goal is to study the following class of Hardy–Hénon type problems
$$\begin{aligned} \left\{ \begin{array}{rclcl}\displaystyle (-\Delta )^{1/2} u& =& \lambda |x|^{\mu } u+|x|^{\alpha }f(u)& \text{ in }& (-1,1),\\ u& =& 0& \text{ on }& \mathbb {R}\setminus (-1,1), \end{array}\right. \end{aligned}$$when \(\mu \ge \alpha {>-1}\), and the nonlinearity f has exponential critical growth in the sense of the Trudinger-Moser inequality. This way, with an appropriate change of variable, due to the behavior of the weight \(|x|^{\alpha }\), one can obtain a version of this inequality in the radial context that allows us to treat the problem with a nonlocal framework and a critical exponent depending on \(\alpha \). When \(\alpha >0\), we have a Hénon problem and this exponent becomes larger than usual. This fact is a counterpart for Ni [37] result for the local case and \(\mathbb {R}^N\) (\(N\ge 3)\). If \(-1<\alpha <0\), we have a Hardy equation. In this case, the exponent is smaller than usual, but we treat a problem with a singularity at 0. The main difficulty is to overcome the lack of compactness inherent to problems involving nonlinearities with critical growth. For this, we apply the variational methods to control the minimax level using Moser functions (see [48]). Then, we guarantee the existence of at least one radial solution under suitable hypotheses for the constants \(\lambda , \mu ,\alpha \), as well as, on f, combined with the interaction of the spectrum of the fractional Laplacian operator via the Mountain Pass Theorem or the Linking Theorem (see [41, 42]). Thus, we study a version of problems treated in [3] for nonlinearities with exponential critical growth and in [25] in a nonlocal context.
中文翻译:
具有涉及指数临界增长的非线性的 Hardy-Hénon 分数方程
在本文中,我们的目标是研究以下类别的 Hardy-Hénon 类型问题
$$\begin{aligned} \left\{ \begin{array}{rclcl}\displaystyle (-\Delta )^{1/2} u& =& \lambda |x|^{\mu } u+|x|^{\alpha }f(u)& \text{ in }& (-1,1),\\ u& =& 0& \text{ on }& \mathbb {R}\setminus (-1,1), \end{array}\right. \end{aligned}$$
当 \(\mu \ge \alpha {>-1}\) 且非线性 f 具有 Trudinger-Moser 不等式意义上的指数临界增长时。这样,由于权重 \(|x|^{\alpha }\) 的行为,通过变量的适当变化,我们可以在径向上下文中获得这种不等式的一个版本,该版本允许我们使用非局部框架和取决于 \(\alpha \) 的临界指数来处理问题。当 \(\alpha >0\) 时,我们有一个 Hénon 问题,这个指数变得比平常大。这个事实与局部情况的 Ni [37] 结果和 \(\mathbb {R}^N\) (\(N\ge 3)\) 相对应。如果 \(-1<\alpha <0\),我们得到一个哈迪方程。在这种情况下,指数比平常小,但我们处理一个奇点为 0 的问题。主要困难是克服涉及临界增长的非线性的问题所固有的缺乏紧凑性。为此,我们应用变分方法,使用 Moser 函数控制极小极大水平(参见 [48])。然后,我们保证在常数 \(\lambda , \mu ,\alpha \) 的合适假设下,以及在 f 上,结合分数阶拉普拉斯算子的频谱通过山口定理或链接定理的相互作用(参见 [41, 42]) 存在至少一个径向解。因此,我们研究了 [3] 中处理的具有指数临界增长的非线性和 [25] 中在非局部上下文中处理的问题版本。