当前位置:
X-MOL 学术
›
Cement Concrete Comp.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Development of novel highly carbonation-reactive fibrous α-wollastonite binder via crystal transformation activation
Cement and Concrete Composites ( IF 10.8 ) Pub Date : 2024-12-04 , DOI: 10.1016/j.cemconcomp.2024.105884 Donglin Li, Xinyu Zhang, Songhui Liu, Genshen Li, Saisai Zhang, Xuemao Guan, Jianping Zhu, Chi Sun Poon, Peiliang Shen
Cement and Concrete Composites ( IF 10.8 ) Pub Date : 2024-12-04 , DOI: 10.1016/j.cemconcomp.2024.105884 Donglin Li, Xinyu Zhang, Songhui Liu, Genshen Li, Saisai Zhang, Xuemao Guan, Jianping Zhu, Chi Sun Poon, Peiliang Shen
This investigation demonstrates a pioneering approach for synthesizing highly carbonation-reactive fibrous α-wollastonite (α-CS) binder through crystal transformation activation of natural wollastonite, resulting in negative CO2 emission while achieving superior mechanical properties. The rapid crystal transformation activation from natural CS to α-CS was accomplished at 1200 °C, markedly enhancing carbonation reactivity while maintaining the inherent fibrous morphology. The transformed α-CS exhibited remarkable performance improvements compared to natural CS, with CO2 uptake increasing by 1.04 times, while compressive and flexural strengths were enhanced by 13.65 and 5.76 times, respectively. Enhanced carbonation reactivity was attributed to reduced Ca-O bond energy, increased crystal defect concentration, and expanded reactive surface area. The crystal transformation activation methodology presents significant advantages over conventional solid-phase sintering by eliminating carbonate decomposition and the associated sintering process, thereby substantially reducing fossil fuel consumption. Additionally, the carbonation curing process facilitates considerable CO2 sequestration, enabling the development of binders with negative CO2 emissions.
中文翻译:
通过晶体相变活化开发新型高碳化反应性纤维α硅灰石粘结剂
这项研究展示了一种通过天然硅灰石的晶体转变活化合成高碳酸化反应性纤维 α-硅灰石 (α-CS) 粘合剂的开创性方法,从而产生负 CO2 排放,同时实现卓越的机械性能。从 natural CS 到 α-CS 的快速晶体转变激活是在 1200 °C 下完成的,在保持固有纤维形态的同时显着增强了碳化反应性。与天然 CS 相比,转化的 α-CS 表现出显着的性能提升,CO2 吸收量增加了 1.04 倍,而抗压强度和抗弯强度分别提高了 13.65 倍和 5.76 倍。碳化反应性增强归因于 Ca-O 键能降低、晶体缺陷浓度增加和反应表面积扩大。与传统固相烧结相比,晶体相变活化方法具有显著优势,消除了碳酸盐分解和相关的烧结过程,从而大大减少了化石燃料的消耗。此外,碳酸化固化工艺有助于大量 CO2 封存,从而能够开发出 CO2 负排放的粘合剂。
更新日期:2024-12-04
中文翻译:
通过晶体相变活化开发新型高碳化反应性纤维α硅灰石粘结剂
这项研究展示了一种通过天然硅灰石的晶体转变活化合成高碳酸化反应性纤维 α-硅灰石 (α-CS) 粘合剂的开创性方法,从而产生负 CO2 排放,同时实现卓越的机械性能。从 natural CS 到 α-CS 的快速晶体转变激活是在 1200 °C 下完成的,在保持固有纤维形态的同时显着增强了碳化反应性。与天然 CS 相比,转化的 α-CS 表现出显着的性能提升,CO2 吸收量增加了 1.04 倍,而抗压强度和抗弯强度分别提高了 13.65 倍和 5.76 倍。碳化反应性增强归因于 Ca-O 键能降低、晶体缺陷浓度增加和反应表面积扩大。与传统固相烧结相比,晶体相变活化方法具有显著优势,消除了碳酸盐分解和相关的烧结过程,从而大大减少了化石燃料的消耗。此外,碳酸化固化工艺有助于大量 CO2 封存,从而能够开发出 CO2 负排放的粘合剂。