当前位置: X-MOL 学术Algebra Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Picard rank jumps for K3 surfaces with bad reduction
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-12-04 , DOI: 10.2140/ant.2025.19.77
Salim Tayou

Let X be a K3 surface over a number field. We prove that X has infinitely many specializations where its Picard rank jumps, hence extending our previous work with Shankar, Shankar and Tang to the case where X has bad reduction. We prove a similar result for generically ordinary nonisotrivial families of K3 surfaces over curves over 𝔽¯p which extends previous work of Maulik, Shankar and Tang. As a consequence, we give a new proof of the ordinary Hecke orbit conjecture for orthogonal and unitary Shimura varieties.



中文翻译:


K3 表面的 Picard 秩跳跃,减少效果不佳



X 为数域上的 K3 曲面。我们证明了 Picard X 等级跳跃的地方有无限多的特化,因此将我们之前对 Shankar、Shankar 和 Tang 的研究扩展到 X 了降阶不良的情况。我们证明了 K3 曲面的一般普通非平凡族在曲线上的类似结果 𝔽¯p ,这扩展了 Maulik、Shankar 和 Tang 以前的工作。因此,我们给出了正交和酉 Shimura 变种的普通 Hecke 轨道猜想的新证明。

更新日期:2024-12-05
down
wechat
bug