当前位置:
X-MOL 学术
›
Algebra Number Theory
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Picard rank jumps for K3 surfaces with bad reduction
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-12-04 , DOI: 10.2140/ant.2025.19.77 Salim Tayou
中文翻译:
K3 表面的 Picard 秩跳跃,减少效果不佳
更新日期:2024-12-05
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-12-04 , DOI: 10.2140/ant.2025.19.77 Salim Tayou
Let be a K3 surface over a number field. We prove that has infinitely many specializations where its Picard rank jumps, hence extending our previous work with Shankar, Shankar and Tang to the case where has bad reduction. We prove a similar result for generically ordinary nonisotrivial families of K3 surfaces over curves over which extends previous work of Maulik, Shankar and Tang. As a consequence, we give a new proof of the ordinary Hecke orbit conjecture for orthogonal and unitary Shimura varieties.
中文翻译:
K3 表面的 Picard 秩跳跃,减少效果不佳
设 为数域上的 K3 曲面。我们证明了 Picard 等级跳跃的地方有无限多的特化,因此将我们之前对 Shankar、Shankar 和 Tang 的研究扩展到 了降阶不良的情况。我们证明了 K3 曲面的一般普通非平凡族在曲线上的类似结果 ,这扩展了 Maulik、Shankar 和 Tang 以前的工作。因此,我们给出了正交和酉 Shimura 变种的普通 Hecke 轨道猜想的新证明。