当前位置: X-MOL 学术Algebra Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Super-Hölder vectors and the field of norms
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-12-04 , DOI: 10.2140/ant.2025.19.195
Laurent Berger, Sandra Rozensztajn

Let E be a field of characteristic p. In a previous paper of ours, we defined and studied super-Hölder vectors in certain E-linear representations of p. In the present paper, we define and study super-Hölder vectors in certain E-linear representations of a general p-adic Lie group. We then consider certain p-adic Lie extensions KK of a p-adic field K, and compute the super-Hölder vectors in the tilt of K. We show that these super-Hölder vectors are the perfection of the field of norms of KK. By specializing to the case of a Lubin–Tate extension, we are able to recover E((Y )) inside the Y -adic completion of its perfection, seen as a valued E-vector space endowed with the action of 𝒪K× given by the endomorphisms of the corresponding Lubin–Tate group.



中文翻译:


Super-Hölder 向量和范数场



E 为特征 p 的域 。在我们的 p 一个复兴 p p 中,我们定义并研究了 的某些线性表示中的 E p super-Hölder 向量。在本文中,我们在一般 p-adic Lie 群的某些线性表示中 E 定义和研究超 Hölder 向量。然后,我们考虑 p-adic 场 K 的某些 p-adic Lie 扩展 KK ,并计算 倾斜度为 的 K 超 Hölder 向量。我们表明,这些超 Hölder 向量是 的范数域的完善 KK 。通过专门研究 Lubin-Tate 扩展的情况,我们能够在其完美的 Y -adic 完成内部恢复 E((Y )) ,被视为一个有价值的 E 向量空间,由相应的 Lubin-Tate 群的自同态赋予 of 𝒪K× 的作用。

更新日期:2024-12-05
down
wechat
bug