Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Engineering an Ultrafast Ambient NO2 Gas Sensor Using Cotton-Modified LaFeO3/MXene Composites
ACS Sensors ( IF 8.2 ) Pub Date : 2024-12-03 , DOI: 10.1021/acssensors.4c02597 Neeraj Dhariwal, Preety Yadav, Manju Kumari, Akanksha, Amit Sanger, Sung Bum Kang, Vinod Kumar, Om Prakash Thakur
ACS Sensors ( IF 8.2 ) Pub Date : 2024-12-03 , DOI: 10.1021/acssensors.4c02597 Neeraj Dhariwal, Preety Yadav, Manju Kumari, Akanksha, Amit Sanger, Sung Bum Kang, Vinod Kumar, Om Prakash Thakur
This work presents a room-temperature (RT) NO2 gas sensor based on cotton-modified LaFeO3 (CLFO) combined with MXene. LaFeO3 (LFO), CLFO, and CLFO/MXene composites were synthesized via a hydrothermal method. The fabricated sensor, utilizing MXene/CLFO, exhibits a p-type behavior and fully recoverable sensing capabilities for low concentrations of NO2, achieving a higher response of 14.2 times at 5 ppm. The sensor demonstrates excellent performance with a response time of 2.7 s and a recovery time of 6.2 s, along with notable stability. The sensor’s sensitivity is attributed to gas interactions on the material’s surface, adsorption energy, and charge-transfer mechanisms. Techniques such as in situ FTIR (Fourier transform infrared) spectroscopy, GC–MS (gas chromatography–mass spectroscopy), and near-ambient pressure X-ray photoelectron spectroscopy were employed to verify gas interactions and their byproducts. Additionally, finite-difference time-domain simulations were used to model the electromagnetic field distribution and provide insight into the interaction between NO2 molecules and the sensor surface at the nanoscale. A prototype wireless IoT (Internet of Things)-based NO2 gas leakage detection system was also developed, showcasing the sensor’s practical application. This study offers valuable insight into the development of room-temperature NO2 sensors with a low detection limit.
中文翻译:
使用棉改性 LaFeO3/MXene 复合材料设计超快环境 NO2 气体传感器
本工作提出了一种基于棉改性 LaFeO3 (CLFO) 结合 MXene 的室温 (RT) NO2 气体传感器。采用水热法合成了 LaFeO3 (LFO)、CLFO 和 CLFO/MXene 复合材料。采用 MXene/CLFO 制造的传感器表现出 p 型行为和对低浓度 NO2 的完全可恢复传感能力,在 5 ppm 时实现了 14.2 倍的响应。该传感器表现出出色的性能,响应时间为 2.7 s,恢复时间为 6.2 s,以及显着的稳定性。传感器的灵敏度归因于材料表面的气体相互作用、吸附能和电荷转移机制。采用原位 FTIR(傅里叶变换红外)光谱、GC-MS(气相色谱-质谱)和近环境压力 X 射线光电子能谱等技术来验证气体相互作用及其副产物。此外,有限差分时域仿真用于模拟电磁场分布,并在纳米尺度上深入了解 NO2 分子与传感器表面之间的相互作用。此外,还开发了基于无线 IoT(物联网)的 NO2 气体泄漏检测系统原型,展示了该传感器的实际应用。本研究为开发具有低检测限的室温 NO2 传感器提供了有价值的见解。
更新日期:2024-12-04
中文翻译:
使用棉改性 LaFeO3/MXene 复合材料设计超快环境 NO2 气体传感器
本工作提出了一种基于棉改性 LaFeO3 (CLFO) 结合 MXene 的室温 (RT) NO2 气体传感器。采用水热法合成了 LaFeO3 (LFO)、CLFO 和 CLFO/MXene 复合材料。采用 MXene/CLFO 制造的传感器表现出 p 型行为和对低浓度 NO2 的完全可恢复传感能力,在 5 ppm 时实现了 14.2 倍的响应。该传感器表现出出色的性能,响应时间为 2.7 s,恢复时间为 6.2 s,以及显着的稳定性。传感器的灵敏度归因于材料表面的气体相互作用、吸附能和电荷转移机制。采用原位 FTIR(傅里叶变换红外)光谱、GC-MS(气相色谱-质谱)和近环境压力 X 射线光电子能谱等技术来验证气体相互作用及其副产物。此外,有限差分时域仿真用于模拟电磁场分布,并在纳米尺度上深入了解 NO2 分子与传感器表面之间的相互作用。此外,还开发了基于无线 IoT(物联网)的 NO2 气体泄漏检测系统原型,展示了该传感器的实际应用。本研究为开发具有低检测限的室温 NO2 传感器提供了有价值的见解。