当前位置:
X-MOL 学术
›
J. Hazard. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Naked-eye and fluorescence resonance energy transfer based ratiometric fluorescent probe for rapid, sensitive and selective detection of hydrazine and its applications in imaging of environmental samples and living systems
Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2024-12-04 , DOI: 10.1016/j.jhazmat.2024.136781 Chunpo Ge, Feng Pei, Pengcheng Zhang, Xiaoyu Wang, Zhiyuan Li, Zhipeng Sai, Tianjun Ni, Kaiwen Chang, Zhijun Yang
Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2024-12-04 , DOI: 10.1016/j.jhazmat.2024.136781 Chunpo Ge, Feng Pei, Pengcheng Zhang, Xiaoyu Wang, Zhiyuan Li, Zhipeng Sai, Tianjun Ni, Kaiwen Chang, Zhijun Yang
Hydrazine, a compound recognized for its carcinogenic and genotoxic properties, presents a significant threat to human health via environmental exposure and drug metabolism. The detection of hydrazine is essential for safeguarding human health. However, a tool capable of accurately detecting hydrazine across diverse sample types, such as soil, water sources, and plant specimens contaminated by hydrazine leakage, as well as cells and live mice containing endogenously generated hydrazine from drug metabolism, is still lacking. In this study, we have designed and synthesized a ratiometric fluorescent probe utilizing the fluorescence resonance energy transfer mechanism. Upon exposure to hydrazine, the probe exhibits an increased fluorescence ratio (F485 nm /F650 nm ) accompanied by a color change from orange to light blue-green. The fluorescence sensing mechanism has been validated through high resolution mass spectrometer and density functional theory. This probe demonstrates significant potential for practical applications in detecting hydrazine within water and soil samples, as well as for imaging exogenous and drug-metabolized endogenous hydrazine in cellular and murine models.
中文翻译:
基于肉眼和荧光共振能量转移的比率式荧光探针,用于快速、灵敏和选择性地检测肼及其在环境样品和生命系统成像中的应用
肼是一种因其致癌和遗传毒性特性而公认的化合物,通过环境暴露和药物代谢对人类健康构成重大威胁。肼的检测对于保护人类健康至关重要。然而,仍然缺乏能够准确检测不同样品类型中肼的工具,例如土壤、水源和被肼泄漏污染的植物样本,以及含有药物代谢中内源性肼的细胞和活小鼠。在这项研究中,我们利用荧光共振能量转移机制设计并合成了一种比率式荧光探针。暴露于肼后,探针表现出荧光比增加 (F485 nm/F650 nm),并伴有从橙色变为浅蓝绿色的颜色变化。荧光传感机制已通过高分辨率质谱仪和密度泛函理论得到验证。该探针在检测水和土壤样品中的肼以及在细胞和小鼠模型中对外源性和药物代谢的内源性肼进行成像方面具有巨大的实际应用潜力。
更新日期:2024-12-04
中文翻译:
基于肉眼和荧光共振能量转移的比率式荧光探针,用于快速、灵敏和选择性地检测肼及其在环境样品和生命系统成像中的应用
肼是一种因其致癌和遗传毒性特性而公认的化合物,通过环境暴露和药物代谢对人类健康构成重大威胁。肼的检测对于保护人类健康至关重要。然而,仍然缺乏能够准确检测不同样品类型中肼的工具,例如土壤、水源和被肼泄漏污染的植物样本,以及含有药物代谢中内源性肼的细胞和活小鼠。在这项研究中,我们利用荧光共振能量转移机制设计并合成了一种比率式荧光探针。暴露于肼后,探针表现出荧光比增加 (F485 nm/F650 nm),并伴有从橙色变为浅蓝绿色的颜色变化。荧光传感机制已通过高分辨率质谱仪和密度泛函理论得到验证。该探针在检测水和土壤样品中的肼以及在细胞和小鼠模型中对外源性和药物代谢的内源性肼进行成像方面具有巨大的实际应用潜力。