当前位置: X-MOL 学术J. Am. Coll. Cardiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Coming AI Revolution in Clinical Trials
Journal of the American College of Cardiology ( IF 21.7 ) Pub Date : 2024-12-04 , DOI: 10.1016/j.jacc.2024.10.093
Sneha S. Jain, Ashish Sarraju, Nigam H. Shah, Kevin A. Schulman, Euan A. Ashley, Robert A. Harrington, Kenneth W. Mahaffey

Section snippets

Digital Strategy and Data Infrastructure

Current systems for data storage and analysis are siloed, limiting the potential for AI to function efficiently across data networks. Without interoperable data systems, even the most advanced AI tools will struggle to deliver real impact. We need a unified data strategy—how we manage, integrate, and safeguard data across platforms—focused on a patient-centered data ecosystem that facilitates information flow across EHRs, health system applications, personal records, and clinical trial data

Business Model Innovation

Current clinical trial business models are designed around trial sites, not participants. They involve processes that are labor-intensive, duplicative, and burdened by high fixed costs for recruitment, site management, and data collection. Data are often collected redundantly, despite also being obtained for routine clinical care, with gaps in collection due to episodic follow-up instead of continuous monitoring. AI has the potential to streamline certain processes, shorten timelines, and lower

Regulatory Modernization and AI Evaluation

Regulatory bodies are crucial in ensuring the safety and efficacy of AI-augmented clinical trials, yet the current regulatory framework was not designed to accommodate the rapid advancements in AI technology or the unique risks of AI use in RCTs. Rather than relying on traditional linear approval pathways, regulators should embrace iterative approaches that incorporate regular feedback. Participants in RCTs that use AI tools for operations are a potentially vulnerable population in which there

Funding Support and Author Disclosures

Dr Jain has received consulting fees from Bristol Myers Squibb, ARTIS Ventures, and Broadview Ventures outside of the submitted work. Dr Sarraju holds stock in Medeloop. Dr Ashley is a founder of Personalis, DeepCell, and Svexa; is a founding advisor of Nuevocor; is a nonexecutive director at AstraZeneca; and has served as an advisor for SequenceBio, Novartis, Medical Excellence Capital, Foresite Capital, and Third Rock Ventures. Dr Harrington has served on the Board of Directors for the


中文翻译:


即将到来的临床试验 AI 革命


 部分片段


数字战略和数据基础设施


当前的数据存储和分析系统是孤立的,限制了 AI 跨数据网络高效运行的潜力。如果没有可互操作的数据系统,即使是最先进的 AI 工具也将难以产生真正的影响。我们需要一个统一的数据策略 — 我们如何跨平台管理、集成和保护数据 — 专注于以患者为中心的数据生态系统,以促进 EHR、卫生系统应用程序、个人记录和临床试验数据之间的信息流动


商业模式创新


当前的临床试验商业模式是围绕试验地点设计的,而不是围绕参与者设计的。它们涉及劳动密集型、重复性流程,并且招聘、现场管理和数据收集的固定成本很高。尽管数据也是为常规临床护理而获得的,但数据通常是冗余收集的,由于发作性随访而不是持续监测,收集存在差距。AI 有可能简化某些流程、缩短时间并降低


监管现代化和 AI 评估


监管机构在确保 AI 增强临床试验的安全性和有效性方面至关重要,但当前的监管框架并不能适应 AI 技术的快速发展或在 RCT 中使用 AI 的独特风险。监管机构不应依赖传统的线性审批途径,而应采用包含定期反馈的迭代方法。使用 AI 工具进行操作的 RCT 的参与者是一个潜在的弱势群体,其中有


资金支持和作者披露


Jain 博士在提交的工作之外还收到了 Bristol Myers Squibb、ARTIS Ventures 和 Broadview Ventures 的咨询费。Sarraju 博士持有 Medeloop 的股票。Ashley 博士是 Personalis、DeepCell 和 Svexa 的创始人;是 Nuevocor 的创始顾问;是阿斯利康的非执行董事;并曾担任 SequenceBio、Novartis、Medical Excellence Capital、Foresite Capital 和 Third Rock Ventures 的顾问。Harrington 博士曾在
更新日期:2024-12-04
down
wechat
bug