当前位置:
X-MOL 学术
›
Phys. Chem. Chem. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Doped hexa-peri-hexabenzocoronene as anode materials for lithium- and magnesium-ion batteries
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-12-04 , DOI: 10.1039/d4cp04101a Remya Geetha Sadasivan Nair, Arun Kumar Narayanan Nair, Bicheng Yan, Shuyu Sun
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-12-04 , DOI: 10.1039/d4cp04101a Remya Geetha Sadasivan Nair, Arun Kumar Narayanan Nair, Bicheng Yan, Shuyu Sun
The adsorption processes of Li+, Li, Mg2+, and Mg on twelve adsorbents (pristine and N/BN/Si-doped hexa-peri-hexabenzocoronene (HBC) molecules) were studied using density functional theory. The molecular electrostatic potential (MESP) analyses show that the replacement of C atoms of HBC by N/BN/Si units can provide a more electron-rich system than the parent HBC molecule. Li+ and Mg2+ exhibit strong adsorption on pristine and doped HBC molecules. The adsorption energy of cations on these nanoflakes (Eads-1) was in the range of −247.44 (Mg2+/m-C40H18N2 system) to −47.65 kcal mol−1 (Li+/B21H18N21 system). Importantly, our results suggest the weaker interactions of Li+ and Mg2+ with the nanoflakes as the MESP minimum values of the nanoflakes became less negative. In all studied systems, we observed electron donation from the nanoflakes to Li+ and Mg2+. For the metal/nanoflake systems, the adsorption energy of metals on the nanoflakes (Eads-2) was in the range of −33.94 (Li/C38H18B2N2 system) to −2.14 kcal mol−1 (Mg/B21H18N21 system). Among the studied anode materials for lithium-ion batteries (LIBs), the highest cell voltage (Vcell) of 1.90 V was obtained for B21H18N21. Among the studied anode materials for magnesium-ion batteries (MIBs), the highest Vcell value of 5.29 V was obtained for m-C40H18N2. Eads-2 has a significant effect on the variation of Vcell of LIBs, while Eads-1 has a significant effect on the variation of Vcell of MIBs.
中文翻译:
掺杂六环六苯并硼烯作为锂离子电池和镁离子电池的负极材料
采用密度泛函理论研究了 Li+、Li、Mg2+ 和 Mg 在 12 种吸附剂(原始和 N/BN/Si 掺杂的六环六苯并冠烯 (HBC) 分子)上的吸附过程。分子静电势 (MESP) 分析表明,用 N/BN/Si 单元取代 HBC 的 C 原子可以提供比母体 HBC 分子更富电子的系统。Li+ 和 Mg2+ 对原始和掺杂的 HBC 分子表现出很强的吸附性。阳离子在这些纳米薄片 (Eads-1) 上的吸附能在 −247.44(Mg2+/m-C 40H18N2 系统)至 -47.65 kcal mol-1(Li+/B21H18N21 系统)的范围内。重要的是,我们的结果表明,随着纳米薄片的 MESP 最小值变得不那么负,Li+ 和 Mg2+ 与纳米薄片的相互作用较弱。在所有研究的系统中,我们观察到纳米薄片向 Li+ 和 Mg2+ 的电子捐赠。对于金属/纳米薄片系统,金属在纳米薄片 (Eads-2) 上的吸附能在 -33.94 (Li/C38H18B2N2 系统)到 -2.14 kcal mol-1 (Mg/B21H18N21 系统)的范围内。 在研究的锂离子电池 (LIB) 负极材料中,B21H18N21 的电池电压 (Vcell) 最高为 1.90 V。在研究的镁离子电池 (MIB) 负极材料中,m-C 40H18N2 的 V电池值最高,为 5.29 V。Eads-2 对 LIB 的 Vcell 变化有显著影响,而 Eads-1 对 MIBs 的 Vcell 变化有显著影响。
更新日期:2024-12-06
中文翻译:
掺杂六环六苯并硼烯作为锂离子电池和镁离子电池的负极材料
采用密度泛函理论研究了 Li+、Li、Mg2+ 和 Mg 在 12 种吸附剂(原始和 N/BN/Si 掺杂的六环六苯并冠烯 (HBC) 分子)上的吸附过程。分子静电势 (MESP) 分析表明,用 N/BN/Si 单元取代 HBC 的 C 原子可以提供比母体 HBC 分子更富电子的系统。Li+ 和 Mg2+ 对原始和掺杂的 HBC 分子表现出很强的吸附性。阳离子在这些纳米薄片 (Eads-1) 上的吸附能在 −247.44(Mg2+/m-C 40H18N2 系统)至 -47.65 kcal mol-1(Li+/B21H18N21 系统)的范围内。重要的是,我们的结果表明,随着纳米薄片的 MESP 最小值变得不那么负,Li+ 和 Mg2+ 与纳米薄片的相互作用较弱。在所有研究的系统中,我们观察到纳米薄片向 Li+ 和 Mg2+ 的电子捐赠。对于金属/纳米薄片系统,金属在纳米薄片 (Eads-2) 上的吸附能在 -33.94 (Li/C38H18B2N2 系统)到 -2.14 kcal mol-1 (Mg/B21H18N21 系统)的范围内。 在研究的锂离子电池 (LIB) 负极材料中,B21H18N21 的电池电压 (Vcell) 最高为 1.90 V。在研究的镁离子电池 (MIB) 负极材料中,m-C 40H18N2 的 V电池值最高,为 5.29 V。Eads-2 对 LIB 的 Vcell 变化有显著影响,而 Eads-1 对 MIBs 的 Vcell 变化有显著影响。