当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Novel in situ SEI fabrication on Zn anodes for ultra-high current density tolerance enabled by electrical excitation–conjugation of iminoacetonitriles
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-04 , DOI: 10.1039/d4ee03624g Ruqian Zhang, Tao Shui, An Li, Huan Xia, Gang Xu, Lingfeng Ji, Chengjie Lu, Wei Zhang, ZhengMing Sun
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-04 , DOI: 10.1039/d4ee03624g Ruqian Zhang, Tao Shui, An Li, Huan Xia, Gang Xu, Lingfeng Ji, Chengjie Lu, Wei Zhang, ZhengMing Sun
Aqueous zinc-ion batteries (AZIBs) offer significant advantages, including low cost, inherent safety, and high theoretical capacity. However, they are prone to surface corrosion and uncontrolled dendrite growth on zinc anodes, particularly under high current densities. Herein, we propose an artificial solid electrolyte interphase (SEI) composed of complex Zn2+ salts to alter the de-solvation process and homogenize the electric field, thereby enabling stable circulation of AZIBs. This SEI is formed through the excitation of iminodiacetonitrile (IDAN) into iminodiacetic acid (IDA) on the surface of the zinc anode during electroplating. Simultaneously, the generated IDAs conjugate with flowing zinc ions thus creating a dense protective layer embedded into the anode surface. The obtained SEI exhibits superior Zn2+ conductivity, super-hydrophilic properties, electrical insulation and negligible interfacial resistance, imparting outstanding durability to the zinc anode even at an ultra-high current density (100 mA cm−2, over 630 h) without dendrite growth, giving a cumulative plating capacity exceeding 31.5 A h cm−2. Moreover, the favorable zinc plating/stripping behavior facilitated by the SEI enables stable operation under harsh conditions (90% depth of discharge, 440 h of Zn||Zn and 20 A g−1, 2000 cycles of Zn||NH4V4O10). The current density tolerance provided by the complex SEI, achieved through a novel in situ excitation/conjugation fabrication process, promises to enrich SEI strategies and expand the application of AZIBs, particularly in fast-charging/discharging battery systems.
中文翻译:
在 Zn 负极上进行新型原位 SEI 制备,通过亚氨基乙腈的电激发-共轭实现超高电流密度耐受性
水系锌离子电池 (AZIB) 具有显著的优势,包括低成本、固有安全性和高理论容量。然而,它们容易受到锌阳极的表面腐蚀和不受控制的枝晶生长,尤其是在高电流密度下。在此,我们提出了一种由络合 Zn2+ 盐组成的人工固体电解质界面 (SEI),以改变去溶剂化过程并使电场均匀化,从而实现 AZIBs 的稳定循环。这种 SEI 是通过在电镀过程中将亚氨基二乙腈 (IDAN) 激发成锌阳极表面的亚氨基二乙酸 (IDA) 而形成的。同时,生成的 IDA 与流动的锌离子共轭,从而在阳极表面形成嵌入致密的保护层。获得的 SEI 表现出卓越的 Zn2+ 导电性、超亲水性能、电绝缘性和可忽略不计的界面电阻,即使在超高电流密度(100 mA cm-2,超过 630 小时)下也没有枝晶生长,也能赋予锌阳极出色的耐用性,累积电镀容量超过 31.5 A h cm-2.此外,SEI 促进的良好镀锌/剥离性能使其能够在恶劣条件下稳定运行(90% 放电深度,440 小时的 Zn||Zn 和 20 A g−1,2000 次 Zn||NH4V4O10)。 通过新颖的原位激发/共轭制造工艺实现的复杂 SEI 提供的电流密度容差有望丰富 SEI 策略并扩大 AZIB 的应用,特别是在快速充电/放电电池系统中。
更新日期:2024-12-04
中文翻译:
在 Zn 负极上进行新型原位 SEI 制备,通过亚氨基乙腈的电激发-共轭实现超高电流密度耐受性
水系锌离子电池 (AZIB) 具有显著的优势,包括低成本、固有安全性和高理论容量。然而,它们容易受到锌阳极的表面腐蚀和不受控制的枝晶生长,尤其是在高电流密度下。在此,我们提出了一种由络合 Zn2+ 盐组成的人工固体电解质界面 (SEI),以改变去溶剂化过程并使电场均匀化,从而实现 AZIBs 的稳定循环。这种 SEI 是通过在电镀过程中将亚氨基二乙腈 (IDAN) 激发成锌阳极表面的亚氨基二乙酸 (IDA) 而形成的。同时,生成的 IDA 与流动的锌离子共轭,从而在阳极表面形成嵌入致密的保护层。获得的 SEI 表现出卓越的 Zn2+ 导电性、超亲水性能、电绝缘性和可忽略不计的界面电阻,即使在超高电流密度(100 mA cm-2,超过 630 小时)下也没有枝晶生长,也能赋予锌阳极出色的耐用性,累积电镀容量超过 31.5 A h cm-2.此外,SEI 促进的良好镀锌/剥离性能使其能够在恶劣条件下稳定运行(90% 放电深度,440 小时的 Zn||Zn 和 20 A g−1,2000 次 Zn||NH4V4O10)。 通过新颖的原位激发/共轭制造工艺实现的复杂 SEI 提供的电流密度容差有望丰富 SEI 策略并扩大 AZIB 的应用,特别是在快速充电/放电电池系统中。