Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Witnessing a discrete microdroplet freezing event via real-time electrochemical monitoring of solution temperature
Analyst ( IF 3.6 ) Pub Date : 2024-12-04 , DOI: 10.1039/d4an01200c Philip J. Kauffmann, Cristian A. Blanco-Combariza, Jeffrey E. Dick
Analyst ( IF 3.6 ) Pub Date : 2024-12-04 , DOI: 10.1039/d4an01200c Philip J. Kauffmann, Cristian A. Blanco-Combariza, Jeffrey E. Dick
Temperature monitoring has immediate relevance to many areas of research, from atmospheric environmental studies to biological sample and food preservation to chemical reactions. Here, we use a triple-barrel electrode to provide temperature readouts in bulk solution and microdroplets, as well as electrochemically monitor freezing events in a microdroplet. Using this method, we are able to identify distinct characteristics of a freezing aqueous droplet (supercooling, ice formation beginning and end, temperature change, and thawing) with greater temporal resolution than a standard thermocouple and without the use of microscopy. By correlating the amperometric signal change caused by alterations in the diffusion coefficient of the electrochemical system in response to temperature changes, we can calculate the instantaneous temperature at our electrode, as well as the physical behavior of ice formation and expansion. Our results suggest that these electrochemical techniques can provide real-time monitoring of the physical processes involved in aqueous temperature change and ice nucleation events. Here, we employ a novel technique using triple-barrel electrodes to provide temperature readouts in bulk solution and microdroplets, as well as electrochemically monitor freezing events in a microdroplet. Because ice nucleation spans many research fields, it is important to have a variety of tools that can be used to better understand these frozen systems. Our data shows that electrochemistry can provide real-time information on the thermal properties of aqueous environments, and these types of measurements can be extended to microdroplets. The electrochemical signal details all the significant moments in a droplet freezing event, allowing us to use electrochemistry as a stand-alone tool for monitoring freezing events with excellent temporal and spatial resolution.
中文翻译:
通过溶液温度的实时电化学监测来见证离散的微滴冻结事件
温度监测与许多研究领域直接相关,从大气环境研究到生物样品和食品保鲜,再到化学反应。在这里,我们使用三桶电极在散装溶液和微滴中提供温度读数,并通过电化学监测微滴中的冻结事件。使用这种方法,我们能够以比标准热电偶更高的时间分辨率识别冻结水滴的不同特征(过冷、冰的形成开始和结束、温度变化和解冻),并且无需使用显微镜。通过关联响应温度变化的电化学系统的扩散系数变化引起的安培信号变化,我们可以计算电极的瞬时温度,以及冰形成和膨胀的物理行为。我们的结果表明,这些电化学技术可以实时监测水温变化和冰成核事件所涉及的物理过程。在这里,我们采用了一种使用三桶电极的新技术来提供散装溶液和微滴中的温度读数,以及电化学监测微滴中的冻结事件。由于冰成核跨越许多研究领域,因此拥有可用于更好地了解这些冻结系统的各种工具非常重要。我们的数据表明,电化学可以提供有关水环境热特性的实时信息,并且这些类型的测量可以扩展到微滴。 电化学信号详细说明了液滴冻结事件中的所有重要时刻,使我们能够将电化学用作监测冻结事件的独立工具,具有出色的时间和空间分辨率。
更新日期:2024-12-04
中文翻译:
通过溶液温度的实时电化学监测来见证离散的微滴冻结事件
温度监测与许多研究领域直接相关,从大气环境研究到生物样品和食品保鲜,再到化学反应。在这里,我们使用三桶电极在散装溶液和微滴中提供温度读数,并通过电化学监测微滴中的冻结事件。使用这种方法,我们能够以比标准热电偶更高的时间分辨率识别冻结水滴的不同特征(过冷、冰的形成开始和结束、温度变化和解冻),并且无需使用显微镜。通过关联响应温度变化的电化学系统的扩散系数变化引起的安培信号变化,我们可以计算电极的瞬时温度,以及冰形成和膨胀的物理行为。我们的结果表明,这些电化学技术可以实时监测水温变化和冰成核事件所涉及的物理过程。在这里,我们采用了一种使用三桶电极的新技术来提供散装溶液和微滴中的温度读数,以及电化学监测微滴中的冻结事件。由于冰成核跨越许多研究领域,因此拥有可用于更好地了解这些冻结系统的各种工具非常重要。我们的数据表明,电化学可以提供有关水环境热特性的实时信息,并且这些类型的测量可以扩展到微滴。 电化学信号详细说明了液滴冻结事件中的所有重要时刻,使我们能够将电化学用作监测冻结事件的独立工具,具有出色的时间和空间分辨率。