Nature Catalysis ( IF 42.8 ) Pub Date : 2024-12-04 , DOI: 10.1038/s41929-024-01251-z Daniel J. Lundberg, Jimin Kim, Yu-Ming Tu, Cody L. Ritt, Michael S. Strano
Anthropogenic methane emissions, particularly from diffuse and dilute sources, pose a significant challenge for oxidation and valorization as existing methane oxidation routes rely on high temperatures or pressures. Here we report the catalytic coupling of alcohol oxidase with the iron-modified ZSM-5 (Fe-ZSM-5) zeolite catalyst, creating a tandem methanotrophic system that partially oxidizes methane at ambient temperatures and pressures. Methane reacts at Fe-ZSM-5 to produce methanol, which is then oxidized at the enzyme to formaldehyde and hydrogen peroxide. The latter subsequently reacts back at Fe-ZSM-5 and oxidizes methane in a catalytic couple. We show that methane-to-formaldehyde selectivity can exceed 90% at room temperature. The generated formaldehyde was rapidly incorporated into a growing urea polymer, with a material growth rate exceeding 5.0 mg gcat−1 h−1, which matches or exceeds the growth rates of many methanotrophic organisms. This work presents a sustainable route for methane oxidation, driven by oxygen in the air under ambient conditions, producing high-value polymers and valorizing methane emission streams.
中文翻译:
由醇氧化酶和 Fe-ZSM-5 催化偶联介导的环境温度和压力下协同甲烷固定
人为甲烷排放,特别是来自扩散和稀释来源的甲烷排放,对氧化和增值构成了重大挑战,因为现有的甲烷氧化路线依赖于高温或高压。在这里,我们报道了醇氧化酶与铁改性 ZSM-5 (Fe-ZSM-5) 沸石催化剂的催化偶联,形成一个串联的甲烷营养系统,在环境温度和压力下部分氧化甲烷。甲烷在 Fe-ZSM-5 上反应生成甲醇,然后在酶中被氧化成甲醛和过氧化氢。后者随后在 Fe-ZSM-5 处反应,并在催化对中氧化甲烷。我们表明,在室温下,甲烷对甲醛的选择性可以超过 90%。生成的甲醛迅速掺入生长中的尿素聚合物中,材料生长速率超过 5.0 mg g cat-1 h-1,这与许多嗜甲烷生物的生长速率相匹配或超过。这项工作提出了一种可持续的甲烷氧化路线,在环境条件下由空气中的氧气驱动,产生高价值的聚合物并赋予甲烷排放流价值。