当前位置:
X-MOL 学术
›
Agric. Syst.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Yield prediction through UAV-based multispectral imaging and deep learning in rice breeding trials
Agricultural Systems ( IF 6.1 ) Pub Date : 2024-11-30 , DOI: 10.1016/j.agsy.2024.104214 Hongkui Zhou, Fudeng Huang, Weidong Lou, Qing Gu, Ziran Ye, Hao Hu, Xiaobin Zhang
Agricultural Systems ( IF 6.1 ) Pub Date : 2024-11-30 , DOI: 10.1016/j.agsy.2024.104214 Hongkui Zhou, Fudeng Huang, Weidong Lou, Qing Gu, Ziran Ye, Hao Hu, Xiaobin Zhang
Predicting crop yields with high precision and timeliness is essential for crop breeding, enabling the optimization of planting strategies and efficients resource allocation while ensuring food security. Current research in this field typically does not address the problem of yield prediction in the diverse context of breeding experiments involving numerous varieties. However, evaluating the performance of prediction models across multiple varieties is vital for further model refining and enhancing model robustness and adaptability.
中文翻译:
在水稻育种试验中通过基于无人机的多光谱成像和深度学习预测产量
高精度和及时地预测作物产量对于作物育种至关重要,在确保粮食安全的同时,能够优化种植策略和有效分配资源。该领域的当前研究通常没有解决涉及众多品种的育种实验的不同背景下的产量预测问题。然而,评估多个品种的预测模型的性能对于进一步完善模型和增强模型的稳健性和适应性至关重要。
更新日期:2024-11-30
中文翻译:
在水稻育种试验中通过基于无人机的多光谱成像和深度学习预测产量
高精度和及时地预测作物产量对于作物育种至关重要,在确保粮食安全的同时,能够优化种植策略和有效分配资源。该领域的当前研究通常没有解决涉及众多品种的育种实验的不同背景下的产量预测问题。然而,评估多个品种的预测模型的性能对于进一步完善模型和增强模型的稳健性和适应性至关重要。